Graph-Based Motif Discovery in Mimotope Profiles of Serum Antibody Repertoire

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14248))

Included in the following conference series:

  • 723 Accesses

Abstract

Phage display technique has a multitude of applications such as epitope map**, organ targeting, therapeutic antibody engineering and vaccine design. One area of particular importance is the detection of cancers in early stages, where the discovery of binding motifs and epitopes is critical. While several techniques exist to characterize phages, Next Generation Sequencing (NGS) stands out for its ability to provide detailed insights into antibody binding sites on antigens. However, when dealing with NGS data, identifying regulatory motifs poses significant challenges. Existing methods often lack scalability for large datasets, rely on prior knowledge about the number of motifs, and exhibit low accuracy. In this paper, we present a novel approach for identifying regulatory motifs in NGS data. Our method leverages results from graph theory to overcome the limitations of existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Andreatta, M., Lund, O., Nielsen, M.: Simultaneous alignment and clustering of peptide data using a gibbs sampling approach. Bioinformatics 29(1), 8–14 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Ash, R.B.: Information Theory. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  4. Bailey, T.L., Elkan, C., et al.: Fitting a mixture model by expectation maximization to discover motifs in bipolymers (1994)

    Google Scholar 

  5. Bratkovič, T.: Progress in phage display: evolution of the technique and its applications. Cell. Mol. Life Sci. 67(5), 749–767 (2010)

    Article  PubMed  Google Scholar 

  6. Choi, I.G., Kwon, J., Kim, S.H.: Local feature frequency profile: a method to measure structural similarity in proteins. Proc. Natl. Acad. Sci. 101(11), 3797–3802 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christiansen, A., et al.: High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci. Rep. 5(1), 1–13 (2015)

    Article  Google Scholar 

  8. Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E.: Weblogo: a sequence logo generator. Genome Res. 14(6), 1188–1190 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dinkel, H., et al.: The eukaryotic linear motif resource elm: 10 years and counting. Nucleic Acids Res. 42(D1), D259–D266 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  Google Scholar 

  11. Gerasimov, E., Zelikovsky, A., Măndoiu, I., Ionov, Y.: Identification of cancer-specific motifs in mimotope profiles of serum antibody repertoire. BMC Bioinf. 18(8), 1–6 (2017)

    Google Scholar 

  12. Geysen, H.M., Rodda, S.J., Mason, T.J.: A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 23(7), 709–715 (1986)

    Article  CAS  PubMed  Google Scholar 

  13. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., Noble, W.S.: Quantifying similarity between motifs. Genome Biol. 8, 1–9 (2007)

    Article  Google Scholar 

  14. Ionov, Y., Rogovskyy, A.S.: Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-borrelia burgdorferi immune sera. PLoS ONE 15(1), e0226378 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, T., et al.: Musi: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets. Nucleic Acids Res. 40(6), e47–e47 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Knittelfelder, R., Riemer, A.B., Jensen-Jarolim, E.: Mimotope vaccination-from allergy to cancer. Expert Opin. Biol. Ther. 9(4), 493–506 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kon, M.A., Fan, Y., Holloway, D., DeLisi, C.: Svmotif: a machine learning motif algorithm. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp. 573–580. IEEE (2007)

    Google Scholar 

  18. Krejci, A., Hupp, T.R., Lexa, M., Vojtesek, B., Muller, P.: Hammock: a hidden markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinformatics 32(1), 9–16 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment. Science 262(5131), 208–214 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X.S., Brutlag, D.L., Liu, J.S.: An algorithm for finding protein-dna binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20(8), 835–839 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Macdougall, I.C., et al.: A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N. Engl. J. Med. 361(19), 1848–1855 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Murphy, K., Weaver, C.: Janeway’s Immunobiology. Garland Science, New York City (2016)

    Book  Google Scholar 

  23. Nielsen, M., Lund, O.: Nn-align. an artificial neural network-based alignment algorithm for mhc class ii peptide binding prediction. BMC Bioinf. 10(1), 296 (2009)

    Google Scholar 

  24. Nielsen, M., et al.: Improved prediction of mhc class i and class ii epitopes using a novel gibbs sampling approach. Bioinformatics 20(9), 1388–1397 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Pietrokovski, S.: Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res. 24(19), 3836–3845 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rentero Rebollo, I., Sabisz, M., Baeriswyl, V., Heinis, C.: Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res. 42(22), e169 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodi, D.J., Janes, R.W., Sanganee, H.J., Holton, R.A., Wallace, B., Makowski, L.: Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J. Mol. Biol. 285(1), 197–203 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Roepcke, S., Grossmann, S., Rahmann, S., Vingron, M.: T-reg comparator: an analysis tool for the comparison of position weight matrices. Nucleic Acids Res. 33(suppl_2), W438–W441 (2005)

    Google Scholar 

  29. Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding dna regulatory motifs within unaligned noncoding sequences clustered by whole-genome mrna quantitation. Nat. Biotechnol. 16(10), 939–945 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Schones, D.E., Sumazin, P., Zhang, M.Q.: Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics 21(3), 307–313 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Smith, G.P.: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705), 1315–1317 (1985)

    Article  CAS  PubMed  Google Scholar 

  32. Smith, G.P., Petrenko, V.A.: Phage display. Chem. Rev. 97(2), 391–410 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Thom, G., et al.: Probing a protein-protein interaction by in vitro evolution. Proc. Natl. Acad. Sci. 103(20), 7619–7624 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tong, A.H.Y., et al.: A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553), 321–324 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Van Regenmortel, M.H.V.: Specificity, polyspecificity and heterospecificity of antibody-antigen recognition. In: HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32459-9_4

    Chapter  Google Scholar 

  36. Wang, L.F., Yu, M.: Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr. Drug Targets 5(1), 1–15 (2004)

    Article  PubMed  Google Scholar 

  37. Wang, T., Stormo, G.D.: Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 19(18), 2369–2380 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, L., Coe, S.P., Stromberg, A.J., Khattar, N.H., Jett, J.R., Hirschowitz, E.A.: Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 1(6), 513–519 (2006)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Saghaian or Alex Zelikovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saghaian, H., Skums, P., Ionov, Y., Zelikovsky, A. (2023). Graph-Based Motif Discovery in Mimotope Profiles of Serum Antibody Repertoire. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation