Theoretical Basis for Space Archaeology

  • Chapter
  • First Online:
Introduction to Space Archaeology
  • 56 Accesses

Abstract

Space archaeology takes space technologies as research means and tool carriers. First, it can improve archaeologists’ ability and work efficiency for discovering relics and remains of ancient human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuBakr, M., Ghoneim, E., El-Baz, F., Zeneldin, M., Zeid, S., 2013, Use of radar data to unveil the paleolakes and the ancestral course of Wadi El-Arish, Sinai Peninsula, Egypt. Geomorphology, 194: 34–45.

    Article  Google Scholar 

  • Agnihotri, R., Patel, N., Srivastava, P., Ambekar, A., Arif, M., Kumar, A., Phartiyal, B., Kumar, A., 2021, A new chronology based on OSL and radiocarbon dating for the archaeological settlements of Vadnagar (western India) along with magnetic and isotopic imprints of cultural sediments. Journal of Archaeological Science: Reports, 38: 103045.

    Google Scholar 

  • Alessandri, L., Cardello, G. L., Attema, P. A. J., Baiocchi, V., Angelis, F. D., Pizzo, S. D., Ciaccio, F. D., Fiorillo, A., Gatta, M., Monti, F., Rolfo, M. F., Romboni, M., Sottili, G., Troisi, S., 2021, Reconstructing the Late Pleistocene-Anthropocene interaction between the neotectonic and archaeological landscape evolution in the Apennines (La Sassa cave, Italy). Quaternary Science Reviews, 265: 107067.

    Article  Google Scholar 

  • Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J., Weishampel, J.F., 2012, Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of Sciences, 109: 12916–12921.

    Article  CAS  Google Scholar 

  • Chen, F., Lin, H., Cheng, S., 2013, Principle, Method and Application of Satellite-borne Radar Interferometry and Time Series Analysis. Bei**g: Science Press.

    Google Scholar 

  • Chen, F., Masini, N., Yang, R., Milillo, P., Feng, D., Lasaponara, R., 2015, A space view of radar archaeological marks: first applications of COSMO-SkyMed X-band data. Remote Sensing, 7: 24–50.

    Article  Google Scholar 

  • Chen, F., Guo, H., Tapete, D., Cigna F., Piro, S., Lasaponara, R., Masini, N., 2022, The role of imaging radar in cultural heritage: From technologies to applications. International Journal of Applied Earth Observation and Geoinformation, 112: 102907.

    Article  Google Scholar 

  • Chen, F., Guo, H., Tapete, D., Masini, N., Cigna, F., Lasaponara, R., Piro, S., Lin, H, Ma, P., 2021, Interdisciplinary approaches based on imaging radar enable cutting-edge cultural heritage applications. National Science Review, 8: nwaa220.

    Google Scholar 

  • Cloude, S. R., Pottier, E., 1997, An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68–78.

    Article  Google Scholar 

  • Duke, D., King, J., 2014, A GIS model for predicting wetland habitat in the Great Basin at the Pleistocene-Holocene transition and implications for Paleoindian archaeology. Journal of Archaeological Science, 49: 276–291.

    Article  Google Scholar 

  • Elfadaly, A., Abouarab, M. A. R., Shabrawy, R. R. M. El., Mostafa, W., Wilson, P., Morhange, C., Silverstein, J., Lasaponara, R., 2019, Discovering Potential Settlement Areas around Archaeological Tells Using the Integration between Historic Topographic Maps, Optical, and Radar Data in the Northern Nile Delta, Egypt. Remote Sensing, 11: 3039.

    Article  Google Scholar 

  • Freeman, A., Durden, S. L. A, 1998, three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 963–973.

    Article  Google Scholar 

  • Giuffrida, D., Nardo, V. M., Neri, D., Cucinotta, G., Calabro, V. I., Pace, L., Ponterio, R. C., 2022, Digitization of two urban archaeological areas in Reggio Calabria (Italy): Roman Thermae and Greek fortifications. Journal of Archaeological Science: Reports, 43: 103441.

    Google Scholar 

  • Goodman, D., Piro, S., 2013. GPR Remote sensing in Archaeology. Springer (Ed), ISBN 978–3–642–31856–6, ISBN 978–3–642–31857–3 (eBook), Springer, Berlin, Germany.

    Google Scholar 

  • Guo, H., Shao, Y., Wang, C., 2000, Theory and Application of Radar Earth Observation. Bei**g: Science Press.

    Google Scholar 

  • Jiang, A., Chen, F., Masini, N., Capozzoli, L., Romano G., Sileo, M., Yang, R., Tang, P., Chen, P., Lasaponara, R., Liu, G., 2017, Archeological crop marks identified from Cosmo-SkyMed time series: the case of Han-Wei capital city,Luoyang, China. International Journal of Digital Earth, 10(8): 846–860.

    Article  Google Scholar 

  • Lasaponara, R., Masini, N., 2012, Satellite Remote Sensing: a new tool for Archaeology. Berlin: Springer.

    Book  Google Scholar 

  • Li, J., Guo, C., Wang, F., Zhang, J., 2007, Overview of Ground Penetrating Radar Application. Progress in Geophysics, 22(2): 629–637.

    Google Scholar 

  • Luo, L., Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S., Shao, J., Bachagha, N., Yang, R, Yao, Y., 2019, Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907-2017). Remote Sensing of Environment, 232:111280.

    Google Scholar 

  • Marcos-Sáiz, F. J., DĂ­ez Fernández-Lomana, J.C., 2017, The Holocene archaeological research around Sierra de Atapuerca (Burgos, Spain) and its projection in a GIS geospatial database. Quaternary International, 433, Part A: 45–67.

    Google Scholar 

  • McCoy, M. D., 2021, Defining the geospatial revolution in archaeology. Journal of Archaeological Science: Reports, 37: 102988.

    Google Scholar 

  • Mori, M., Kuhara, S., Kobayashi, K., Suzuki, S., Yamada, M., Senoo, A., 2019, Non-destructive tree-ring measurements using a clinical 3T-MRI for archaeology. Dendrochronologia, 57: 125630.

    Article  Google Scholar 

  • Moyano, J., Gil-ArizĂłn, I., Nieto-Julián, J. E., MarĂ­n-GarcĂ­a, D., 2022, Analysis and management of structural deformations through parametric models and HBIM workflow in architectural heritage. Journal of Building Engineering, 45: 103274.

    Article  Google Scholar 

  • Parcak, S., 2003, New methods for archaeological site detection via satellite image analysis: case studies from Sinai and the Delta. Archaeologia Polonia, 41: 243-5.

    Google Scholar 

  • Parcak, S., 2009, Satellite remote sensing for archaeology. Routledge.

    Book  Google Scholar 

  • Shu, N., 2000, Principles of Microwave Remote Sensing. Wuhan: Wuhan University of Surveying and Map** Press.

    Google Scholar 

  • Spencer, C., Bevan, A., 2018, Settlement location models, archaeological survey data and social change in Bronze Age Crete. Journal of Anthropological Archaeology, 52: 71–86.

    Article  Google Scholar 

  • Tapete, D., Casagli, N., Luzi, G., 2013, Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. Journal of Archaeological Science, 40: 176–189.

    Article  Google Scholar 

  • Wiseman, J., El-Baz, F., 2007, Remote Sensing in Archaeology. New York: Springer.

    Book  Google Scholar 

  • **a, Z., 2012, Environmental Archaeology-Theory and Practice. Bei**g: Peking University Press, 53.

    Google Scholar 

  • Yamaguchi, Y., Moriyama, T., Ishido, M., Yamada, H., 2005, Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1699–1706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Wang, X., Chen, F., Wang, C. (2024). Theoretical Basis for Space Archaeology. In: Introduction to Space Archaeology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6965-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6965-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6964-7

  • Online ISBN: 978-981-99-6965-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics

Navigation