Abstract

For the therapeutic management of eye disorders, ophthalmic drug delivery is an important concern. Conventional drug delivery frequently possesses inherent disadvantages, including reduced bioavailability caused by poor corneal penetrability and a limited drug survival time. Eye diseases associated with aging are more frequent nowadays. The major prevalent concerns, including cataract, glaucoma, and age-related macular degeneration (AMD), have been shown a noticeable rise. Copolymers and block copolymers have been utilized extensively for ocular drug delivery and their applications range from the formation of sustained release formulations to smart polymeric delivery-based systems, such as stimuli-responsive polymeric systems, including pH-sensitive, thermosensitive, photo-sensitive, enzyme-sensitive, etc. Lately, numerous types of block copolymer-based nanocarriers have been developed and are being researched for the delivery of drugs to the eyes. This chapter discusses the role of block copolymers, including their subtypes, as well as the most significant and recent developments on self-assembled block copolymers as nanocarrier systems which can be used to successfully increase the solubility of hydrophobic drugs, useful in targeting the eye, delivering active molecules in a controlled manner meanwhile lessening side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelkader H et al (2021) Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: inserts, patches, wafers, and implants. Adv Drug Deliv Rev 177:113957

    CAS  PubMed  Google Scholar 

  • Alami-Milani M et al (2017) Novel Pentablock copolymers as thermosensitive self-assembling micelles for ocular drug delivery. Adv Pharm Bull 7(1):11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baino F, Kargozar S (2020) Regulation of the ocular cell/tissue response by implantable biomaterials and drug delivery systems. Bioengineering (Basel) 7(3):65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basile AS et al (2015) Population pharmacokinetics of pegaptanib sodium (Macugen((R))) in patients with diabetic macular edema. Clin Ophthalmol 9:323–335

    PubMed  PubMed Central  Google Scholar 

  • Belin MW et al (2018) Corneal cross-linking: current USA status: report from the cornea society. Cornea 37(10):1218–1225

    PubMed  Google Scholar 

  • Booth C, Attwood D (2000) Effects of block architecture and composition on the association properties of poly (oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun 21(9):501–527

    CAS  Google Scholar 

  • Bravo-Osuna I et al (2016) Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 6(6):686–707

    CAS  PubMed  Google Scholar 

  • Calvo P et al (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    CAS  PubMed  Google Scholar 

  • Chen X, Liu F (2022) Synthesis and phase behavior of a linear amphiphilic multiblock copolymer. ACS Omega 7(23):19319–19327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ruckenstein E (2014) Micellar structures in nanoparticle-multiblock copolymer complexes. Langmuir 30(13):3723–3728

    CAS  PubMed  Google Scholar 

  • Chen JZ et al (2008) Self-assembly of rod-coil-rod ABA-type triblock copolymers. J Chem Phys 128(7):074904

    PubMed  Google Scholar 

  • Chun YY et al (2021) Positive-charge tuned gelatin hydrogel-siSPARC injectable for siRNA anti-scarring therapy in post glaucoma filtration surgery. Sci Rep 11(1):1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danion A, Arsenault I, Vermette P (2007) Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci 96(9):2350–2363

    CAS  PubMed  Google Scholar 

  • Delgado D et al (2012) Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum Gene Ther 23(4):345–355

    CAS  PubMed  Google Scholar 

  • Deng S et al (2018) Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release. J Biomater Sci Polym Ed 29(13):1643–1655

    CAS  PubMed  Google Scholar 

  • Devi S et al (2019) A novel approach of drug localization through development of polymeric micellar system containing Azelastine HCl for ocular delivery. Pharm Nanotechnol 7(4):314–327

    CAS  PubMed  Google Scholar 

  • Di Tommaso C et al (2011) Ocular biocompatibility of novel Cyclosporin a formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416(2):515–524

    PubMed  Google Scholar 

  • Durgun ME et al (2020) Optimization and characterization of aqueous micellar formulations for ocular delivery of an antifungal drug, Posaconazole. Curr Pharm Des 26(14):1543–1555

    CAS  PubMed  Google Scholar 

  • Dutescu RM, Panfil C, Schrage N (2017) Comparison of the effects of various lubricant eye drops on the in vitro rabbit corneal healing and toxicity. Exp Toxicol Pathol 69(3):123–129

    CAS  PubMed  Google Scholar 

  • Eid HM et al (2019) Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of Ofloxacin: the influence of Pegylation and chitosan coating. AAPS PharmSciTech 20(5):183

    PubMed  Google Scholar 

  • Fan X et al (2020) Evaluation of commercial soft contact lenses for ocular drug delivery: a review. Acta Biomater 115:60–74

    CAS  PubMed  Google Scholar 

  • Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Adv Drug Deliv Rev 107:367–392

    CAS  PubMed  Google Scholar 

  • Figueroa-Ochoa EB et al (2016) Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs. Int J Pharm 510(1):17–29

    CAS  PubMed  Google Scholar 

  • Garcia-Estrada P et al (2021) Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. Pharmaceutics 13(5):701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goepferich A (2015) Ocular drug delivery. Eur J Pharm Biopharm 95(Pt B):157

    CAS  PubMed  Google Scholar 

  • Gomaa MM et al (2022) Characterization and modeling of free volume and ionic conduction in multiblock copolymer proton exchange membranes. Polymers (Basel) 14(9):1688

    CAS  PubMed  Google Scholar 

  • Gonzalez-Chomon C et al (2016) Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater 41:302–311

    CAS  PubMed  Google Scholar 

  • Gottel B et al (2020) In situ gelling amphotericin B nanofibers: a new option for the treatment of Keratomycosis. Front Bioeng Biotechnol 8:600384

    PubMed  PubMed Central  Google Scholar 

  • Gupta AK et al (2000) Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm 209(1–2):1–14

    CAS  PubMed  Google Scholar 

  • Halasz K et al (2019) Micro/nanoparticle delivery Systems for Ocular Diseases. Assay Drug Dev Technol 17(4):152–166

    CAS  PubMed  Google Scholar 

  • He G et al (2007) ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and "stealth" particle characteristics. Int J Pharm 334(1–2):48–55

    CAS  PubMed  Google Scholar 

  • Huang D, Chen YS, Rupenthal ID (2018) Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 126:96–112

    CAS  PubMed  Google Scholar 

  • Iezzi R et al (2012) Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33(3):979–988

    CAS  PubMed  Google Scholar 

  • Imperiale JC, Acosta GB, Sosnik A (2018) Polymer-based carriers for ophthalmic drug delivery. J Control Release 285:106–141

    CAS  PubMed  Google Scholar 

  • **g Z et al (2022) Crystallization, thermal and mechanical properties of stereocomplexed poly(lactide) with flexible PLLA/PCL multiblock copolymer. RSC Adv 12(21):13180–13191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M et al (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28(5):1721–1723

    CAS  Google Scholar 

  • Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539–542

    PubMed  PubMed Central  Google Scholar 

  • Kuno N, Fujii S (2010) Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging 27(2):117–134

    CAS  PubMed  Google Scholar 

  • Lakhani P et al (2019) Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm 572:118771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Palamoor M, Jablonski MM (2016) Poly(ortho ester) nanoparticles targeted for chronic intraocular diseases: ocular safety and localization after intravitreal injection. Nanotoxicology 10(8):1152–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12(5):608–620

    CAS  PubMed  Google Scholar 

  • Liu D et al (2019) A novel FK506 loaded nanomicelles consisting of amino-terminated poly(ethylene glycol)-block-poly(D,L)-lactic acid and hydroxypropyl methylcellulose for ocular drug delivery. Int J Pharm 562:1–10

    CAS  PubMed  Google Scholar 

  • Liu W et al (2020) Treatment efficacy and biocompatibility of a biodegradable Aflibercept-loaded microsphere-hydrogel drug delivery system. Transl Vis Sci Technol 9(11):13

    PubMed  PubMed Central  Google Scholar 

  • Ly DQ, Makatsoris C (2019) Effects of the homopolymer molecular weight on a diblock copolymer in a 3D spherical confinement. BMC Chem 13(1):24

    PubMed  PubMed Central  Google Scholar 

  • Mah FS (2016) Effect on gel formation time of adding topical ophthalmic medications to ReSure sealant, an in situ hydrogel. J Ocul Pharmacol Ther 32(6):396–399

    CAS  PubMed  Google Scholar 

  • Mah F et al (2012) PERSIST: Physician's evaluation of Restasis((R)) satisfaction in second trial of topical cyclosporine ophthalmic emulsion 0.05% for dry eye: a retrospective review. Clin Ophthalmol 6:1971–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monzen M et al (2000) Micelle formation in triblock copolymer solutions. Comp Theor Polymer Sci 10(3–4):275–280

    CAS  Google Scholar 

  • Osswald CR et al (2017) In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system. Curr Eye Res 42(9):1293–1301

    CAS  PubMed  Google Scholar 

  • Paolini MS et al (2019) Polymers for extended-release administration. Biomed Microdevices 21(2):45

    PubMed  Google Scholar 

  • Percec V et al (2006) Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 C. J Am Chem Soc 128(43):14156–14165

    CAS  PubMed  Google Scholar 

  • Pereira-da-Mota AF et al (2021) Atorvastatin-eluting contact lenses: effects of molecular imprinting and sterilization on drug loading and release. Pharmaceutics 13(5):606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasannan A et al (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2(14):1988–1997

    CAS  PubMed  Google Scholar 

  • Qamar Z et al (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13(4):246–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JB et al (2014) Gelatin-based materials in ocular tissue engineering. Materials (Basel) 7(4):3106–3135

    CAS  PubMed  Google Scholar 

  • Salama AH, Shamma RN (2015) Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm 492(1–2):28–39

    CAS  PubMed  Google Scholar 

  • Shi AC (2021) Frustration in block copolymer assemblies. J Phys Condens Matter 33(25):253001

    CAS  Google Scholar 

  • Shi H et al (2019) ABA-type triblock copolymer micellar system with lower critical solution temperature-type sol-gel transition. J Colloid Interface Sci 545:220–230

    CAS  PubMed  Google Scholar 

  • Shin CS et al (2017) Application of hydrogel template strategy in ocular drug delivery. Methods Mol Biol 1570:279–285

    CAS  PubMed  Google Scholar 

  • Song X et al (2016) Facile synthesis of novel polyethylene-based A-B-C block copolymers containing poly(methyl methacrylate) using a living polymerization system. Macromol Rapid Commun 37(3):227–231

    CAS  PubMed  Google Scholar 

  • Spencer RKW, Matsen MW (2018) Fluctuation effects in blends of a + B homopolymers with AB diblock copolymer. J Chem Phys 148(20):204907

    PubMed  Google Scholar 

  • Taha EI et al (2014) Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. J Mol Liq 199:251–256

    CAS  Google Scholar 

  • Ubani-Ukoma U et al (2019) Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm 565:499–508

    CAS  PubMed  Google Scholar 

  • Vasvani S, Kulkarni P, Rawtani D (2020) Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 151:1012–1029

    CAS  PubMed  Google Scholar 

  • Wang J et al (2017) Mildly cross-linked dendrimer hydrogel prepared via Aza-Michael addition reaction for topical Brimonidine delivery. J Biomed Nanotechnol 13(9):1089–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woloszczuk S et al (2015) Dual modes of self-assembly in superstrongly segregated bicomponent triblock copolymer melts. Phys Rev E Stat Nonlinear Soft Matter Phys 91(1):010601

    CAS  Google Scholar 

  • **e L et al (2021) A long-acting curcumin nanoparticle/in situ hydrogel composite for the treatment of uveal melanoma. Pharmaceutics 13(9):1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yavuz B, Kompella UB (2017) Ocular drug delivery. Handb Exp Pharmacol 242:57–93

    CAS  PubMed  Google Scholar 

  • Yavuz B, Pehlivan SB, Unlu N (2013) Dendrimeric systems and their applications in ocular drug delivery. ScientificWorldJournal 2013:732340

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z et al (2016) Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules 17(3):798–807

    CAS  PubMed  Google Scholar 

  • Zhang X et al (2021) Hyaluronic acid in ocular drug delivery. Carbohydr Polym 264:118006

    CAS  PubMed  Google Scholar 

  • Zhao L et al (2017) An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration. J Control Release 247:153–166

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, Y. et al. (2023). Role of Block Copolymers in Ocular Drug Delivery. In: Mishra, N., Pandey, V. (eds) Block Co-polymeric Nanocarriers: Design, Concept, and Therapeutic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6917-3_14

Download citation

Publish with us

Policies and ethics

Navigation