Evaluating RNN and Its Improved Models for Lithium Battery SoH and BRL Prediction

  • Conference paper
  • First Online:
Proceedings of 2023 Chinese Intelligent Systems Conference (CISC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1090))

Included in the following conference series:

  • 426 Accesses

Abstract

Drones require high-performance lithium batteries, and conventional battery replacement standards are not applicable in the context of drones. To address these issues, this paper introduces the State of Health (SoH) as an indicator to assess battery condition and proposes the concept of Battery Replacement Life (BRL) for Unmanned Aerial Vehicles (UAVs). To predict the SoH and BRL of UAV lithium batteries, this study employs models such as recurrent neural networks (RNN) to address the problem, including long short-term memory (LSTM) and gated recurrent units (GRU) designed for time-series problems. The research shows that the 3–4 layer LSTM and GRU models exhibit promising outcomes in predicting the SoH and BRL of the UAV lithium battery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., Ouyang, M.: A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 1, 100005 (2019)

    Article  Google Scholar 

  2. Tran, M.-K., Cunanan, C., Panchal, S., Fraser, R., Fowler, M.: Investigation of individual cells replacement concept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements. Processes 9(12), 2263 (2021)

    Article  Google Scholar 

  3. Shahjalal, M., Roy, P.K., Shams, T., Fly, A., Chowdhury, J.I., Rishad Ahmed, Md., Liu, K.: A review on second-life of li-ion batteries: prospects, challenges, and issues. Energy 241, 122881 (2022)

    Google Scholar 

  4. Lee, J., Kwon, D., Pecht, M.G.: Reduction of li-ion battery qualification time based on prognostics and health management. IEEE Trans. Indus. Electron. 66(9), 7310–7315 (2018)

    Article  Google Scholar 

  5. Abeywickrama, H.V., Jayawickrama, B.A., He, Y., Dutkiewicz, E.: Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE Access 6, 58383–58394 (2018)

    Article  Google Scholar 

  6. Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., Van den Bossche, P.: Critical review of state of health estimation methods of li-ion batteries for real applications. Renew. Sustain. Energy Rev. 56, 572–587 (2016)

    Article  Google Scholar 

  7. Sun, H., Wen, X., Liu, W., Wang, Z., Liao, Q.: State-of-health estimation of retired lithium-ion battery module aged at 1c-rate. J. Energy Storage 50, 104618 (2022)

    Article  Google Scholar 

  8. Wang, H.-K., Zhang, Y., Huang, M.: A conditional random field based feature learning framework for battery capacity prediction. Sci. Rep. 12(1), 13221 (2022)

    Article  Google Scholar 

  9. Chemali, E., Kollmeyer, P.J., Preindl, M., Ahmed, R., Emadi, A.: Long short-term memory networks for accurate state-of-charge estimation of li-ion batteries. IEEE Trans. Indus. Electron. 65(8), 6730–6739 (2017)

    Article  Google Scholar 

  10. Hoque, Md.A., Hassan, M.K., Hajjo, A., Tokhi, M.O.: Neural network-based li-ion battery aging model at accelerated c-rate. Batteries 9(2), 93 (2023)

    Article  Google Scholar 

  11. Ardeshiri, R.R., Ma, C.: Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach. Int. J. Energy Res. 45(11), 16633–16648 (2021)

    Article  Google Scholar 

  12. Singh, M., Bansal, S., Panigrahi, B.K., Garg, A.: A genetic algorithm and rnn-lstm model for remaining battery capacity prediction. J. Comput. Inform. Sci. Eng. 22(4), 041009 (2022)

    Article  Google Scholar 

  13. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Article  Google Scholar 

  14. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with lstm. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Wang, J., Chen, X. (2023). Evaluating RNN and Its Improved Models for Lithium Battery SoH and BRL Prediction. In: Jia, Y., Zhang, W., Fu, Y., Wang, J. (eds) Proceedings of 2023 Chinese Intelligent Systems Conference. CISC 2023. Lecture Notes in Electrical Engineering, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-99-6882-4_18

Download citation

Publish with us

Policies and ethics

Navigation