Scope of Three-Dimensional Printing for Fabrication of Foods

  • Chapter
  • First Online:
Food Process Engineering and Technology

Abstract

Three–dimensional (3D) printing has been receiving prime focus for the production of customized foods by accurately balancing both palatability and nutrition of foods. The 3D printing is a promising alternative to the traditional methods of processing food since it is proven to assist older people with disabilities effectively, print artistically attractive fortified food products for children, provide an opportunity for vegan consumers to taste plant-based meat and produce foods with an enhanced shelf-life for space travel, being more accurate with high precision. The customizable property of this technique proves to satisfy the needs of all age groups. Despite having various advantages, researchers and industrialists face challenges during production, such as: improving the success rate of 3D printed food for a better dining experience and other engineering problems. The main objective of this review chapter is to collect, analyze and conclude the information regarding food processing and production using 3D printers. This chapter also reviews applications of additive manufacturing in the food industry, various materials available for 3D printing, consumer acceptability of 3D printed products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera JM, Park DJ (2016) Texture-modified foods for the elderly: status, technology and opportunities. Trends Food Sci Technol 57(1):156–164

    Article  CAS  Google Scholar 

  • Amza C, Zapciu A, Popescu D (2017) Paste extruder: hardware add-on for desktop 3D printers. Technologies 5(3):50

    Article  Google Scholar 

  • Anukiruthika T, Moses JA, Anandharamakrishnan C (2020) 3D printing of egg yolk and white with rice flour blends. J Food Eng 265(11):109691

    Article  CAS  Google Scholar 

  • Aspler J, Kingsland A, Cormier LM, Zou X (2016) 3D printing: a review of technologies, markets, and opportunities for the forest industry. J Sci Technol Forest Prod Process 5(2):30–37

    Google Scholar 

  • Attalla R, Ling C, Selvaganapathy P (2016) Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed Microdevices 18(1):17

    Article  CAS  PubMed  Google Scholar 

  • Azam RSM, Zhang M, Bhandari B, Yang C (2018) Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophys 13(3):250–262

    Article  Google Scholar 

  • Balasubramanian B, Liu W, Pushparaj K, Park S (2021) The epic of in vitro meat production – a fiction into reality. Foods 10(6):1395–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakh Ali SF, Mohamed EM, Ozkan T, Kuttolamadom MA, Khan MA, Asadi A, Rahman Z (2019) Understanding the effects of formulation and process variables on the print-lets quality manufactured by selective laser sintering 3D printing. Int J Pharm 570(42):118651

    Article  CAS  PubMed  Google Scholar 

  • Beckett ST (2008) Chocolate flow properties. In: Beckett ST (ed) Industrial chocolate manufacture and use, 4th edn. Blackwell Publishing Ltd, London, pp 224–246

    Chapter  Google Scholar 

  • Boukid F, Castellari M (2021) Veggie burgers in the EU market: a nutritional challenge? Eur Food Res Technol 247(10):2445–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke-Shyne S, Gallegos D, Williams T (2020) 3D food printing: nutrition opportunities and challenges. Br Food J 123(2):649–663

    Article  Google Scholar 

  • Caulier S, Doets E, Noort M (2020) An exploratory consumer study of 3D printed food perception in a real-life military setting. Food Qual Prefer 86:104001

    Article  Google Scholar 

  • Chen YW, Mackley MR (2006) Flexible chocolate. Soft Matter 2(4):304–309

    Article  CAS  PubMed  Google Scholar 

  • Cohen DL, Lipton JI, Cutler M, Coulter D, Vesco A, Lipson H (2009) Hydrocolloid printing: a novel platform for customized food production. International Solid Freeform Fabrication Symposium, Austin, pp 807–818

    Google Scholar 

  • Dankar I, Haddarah A, El Omar FEL, Sepulcre F, PujolĂ  M (2018a) Assessing the microstructural and rheological changes induced by food additives on potato puree. Food Chem 240:304–313

    Article  CAS  PubMed  Google Scholar 

  • Dankar I, Haddarah A, Omar FEL, Sepulcre F, PujolĂ  M (2018b) 3D printing technology: the new era for food customization and elaboration. Trends Food Sci Technol 75(5):231–242

    Article  CAS  Google Scholar 

  • Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid AE, De A et al (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  • Derossi A, Caporizzi R, Azzollini D, Severini C (2018) Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J Food Eng 220:65–75

    Article  Google Scholar 

  • Derossi A, Paolillo M, Caporizzi R, Severini C (2019) Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. J Food Eng 275:109865

    Article  Google Scholar 

  • Diamante L, Umemoto M (2015) Rheological properties of fruits and vegetables: a review. Int J Food Prop 18(6):1191–1210

    Article  Google Scholar 

  • Dick A, Bhandari B, Prakash S (2019a) 3D printing of meat. Meat Sci 153:35–44

    Article  CAS  PubMed  Google Scholar 

  • Dick A, Bhandari B, Prakash S (2019b) Post-processing feasibility of composite-layer 3D printed beef. Meat Sci 153:9–18

    Article  CAS  PubMed  Google Scholar 

  • Douglas G, Cooper M, BermĂşdez-Aguirre D, Sirmons T (2016) Risk of performance decrement and crew illness due to an inadequate food system. National Aeronautics and Space Administration (NASA) Lyndon B Johnson Space Center, Houston, pp 1–33

    Google Scholar 

  • Dwyer JT, Wiemer KL, Dary O, Keen CL, King JC, Miller KB, Philbert MA, Tarasuk V, Taylor CL et al (2015) Fortification and health: challenges and opportunities. Adv Nutr 6(1):124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AW, Miller JS (2017) Progress in three-dimensional bioprinting. MRS Bull 42(8):557–562

    Article  CAS  Google Scholar 

  • Fina F, Goyanes A, Gaisford S, Basit AW (2017) Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm 529(1-2):285–293

    Article  CAS  PubMed  Google Scholar 

  • Gholamipour-Shirazi A, Kamlow MA, Norton T, Mills T (2020) How to formulate for structure and texture via medium of additive manufacturing – a review. Foods 9(4):497–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson I, Rosen DW, Stucker B (eds) (2009) Additive manufacturing technologies: rapid prototy** to direct digital manufacturing. Springer, New York, p 498

    Google Scholar 

  • Godoi FC, Prakash S, Bhandari BR (2016) 3D printing technologies applied for food design: status and prospects. J Food Eng 179:44–54

    Article  Google Scholar 

  • Goyanes A, Madla CM, Umerji A, Piñeiro GD, Montero JMG, Diaz MJL, Basit AW, Taherali F, Sánchez-Pintos P et al (2019) Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: first single-center, prospective, crossover study in patients. Int J Pharm 567:118497

    Article  CAS  PubMed  Google Scholar 

  • Guo CF, Zhang M, Bhandari B (2019) A comparative study between syringe-based and screw-based 3D food printers by computational simulation. Comput Electron Agric 162:397–404

    Article  Google Scholar 

  • Hamilton CA, Alici G, Panhuis M (2017) 3D printing vegemite and marmite: redefining bread-boards. J Food Eng 220:83–88

    Article  Google Scholar 

  • Handral KH, Hua TWS, Wan CW, Choudhury D (2020) 3D printing of cultured meat products. Crit Rev Food Sci Nutr 62(1):272–281

    Article  Google Scholar 

  • Hao L, Li Y, Gong P, **ong W (2019) Material, process and business development for 3D chocolate printing. In: Godoi FC, Bhandari BR, Prakash S, Zhang M (eds) Fundamentals of 3D food printing and applications, 1st edn. Academic Press, London, pp 207–255

    Chapter  Google Scholar 

  • Hayman LL, Worel JN (2014) Healthy lifestyle behaviors: the importance of individual and population approaches. J Cardiovasc Nurs 29(6):477–478

    Article  PubMed  Google Scholar 

  • He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19(2):447–456

    Article  CAS  Google Scholar 

  • He Q, Jiang J, Yang X, Zhang L, Zhou Z, Zhong Y, Shen Z (2021) Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion. J Eur Ceram Soc 41(1):1033–1040

    Article  CAS  Google Scholar 

  • Hemsley B, Palmer SR, Kouzani A, Adams S, Balandin S (2019) Review informing the design of 3D food printing for people with swallowing disorders: constructive, conceptual, and empirical problems. In: Paper presentation at 52nd Hawaii international conference on system sciences. University of Hawaii, Hawaii

    Google Scholar 

  • Hinton TJ, Lee A, Feinberg AW (2017) 3D bioprinting from the micrometer to millimeter length scales: size does matter. Curr Opin Biomed Eng 1:31–37

    Article  Google Scholar 

  • Holland S, Foster T, Tuck C (2019) Creation of food structures through binder jetting. In: Godoi FC, Bhandari BR, Prakash S, Zhang M (eds) Fundamentals of 3D food printing and applications. Academic Press, London, pp 257–288

    Chapter  Google Scholar 

  • Huang M, Zhang M, Bhandari B (2019) Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food Bioprocess Technol 12(7):1185–1196

    Article  Google Scholar 

  • Huang M, Zhang M, Guo C (2020) 3D printability of brown rice gel modified by some food hydrocolloids. J Food Process Preserv 44(7):14502

    Article  Google Scholar 

  • Hussain S, Arora VK, Malakar S (2021) Formulation of protein-enriched 3D printable food matrix and evaluation of textural, rheological characteristics, and printing stability. J Food Process Preserv 45(2):1–11

    Article  Google Scholar 

  • Izdebska J, Ĺ»oĹ‚ek-Tryznowska Z (2016) 3D food printing – facts and future. Agro Food Ind Hi Tech 27(2):33–36

    Google Scholar 

  • Jagadiswaran B, Alagarasan V, Palanivelu P, Theagarajan R, Moses JA, Anandharamakrishnan C (2021) Valorization of food industry waste and by-products using 3D printing: a study on the development of value-added functional cookies. Future Foods 4:100036

    Article  CAS  Google Scholar 

  • Karavasili C, Gkaragkounis A, Moschakis T, Ritzoulis C, Fatouros DG (2020) Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur J Pharm Sci 147:105291

    Article  CAS  PubMed  Google Scholar 

  • Kaur L (2004) Factors influencing the properties of hydroxy propylated potato starches. Carbohydr Polym 55(2):211–223

    Article  CAS  Google Scholar 

  • Kazir M, Livney YD (2021) Plant-based seafood analogs. Molecules 26(6):1559–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kewuyemi YO, Kesa H, Adebo O (2021) Trends in functional food development with three-dimensional food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr 61:1–13

    Google Scholar 

  • Kouzani AZ, Adams S, Oliver R, Nguwi YY, Hemsley B, Balandin S (2016) 3D printing of a pavlova. In: 10th IEEE reg conference (TENCON). Singapore, IEEE, pp 2281–2285

    Google Scholar 

  • Lanaro M, Forrestal DP, Scheurer S, Slinger DJ, Liao S, Powell SK, Woodruff MA (2017) 3D printing complex chocolate objects: platform design, optimization and evaluation. J Food Eng 215:13–22

    Article  CAS  Google Scholar 

  • Lanaro M, Desselle MR, Woodruff MA (2019) 3D printing chocolate. In: Godoi FC, Bhandari BR, Prakash S, Zhang M (eds) Fundamentals of 3D food printing and applications. Academic Press, London, pp 151–173

    Chapter  Google Scholar 

  • Le-Bail A, Chieregato MB, Le-Bail P (2020) 3D printing of foods: recent developments, future perspectives and challenges. Curr Opin Food Sci 35:54–64

    Article  Google Scholar 

  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N (2018) Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J Food Eng 220:20–27

    Article  CAS  Google Scholar 

  • Lin C (2015) 3D food printing: a taste of the future. J Food Sci Educ 14(3):86–87

    Article  Google Scholar 

  • Lin YJ, Punpongsanon P, Wen X, Iwai D, Sato K, Obrist M, Mueller S (2020) FoodFab: creating food perception illusions using food 3D printing. In: Proceedings of the conference on human factors in computing systems. ACM (Association for Computing Machinery) Publisher, Honolulu, pp 1–13

    Google Scholar 

  • Lipton JI (2017) Printable food: the technology and its application in human health. Curr Opin Biotechnol 44:198–201

    Article  CAS  PubMed  Google Scholar 

  • Lipton JI, Arnold D, Nigl F, Lopez N, Cohen D, NorĂ©n N, Lipson H (2010) Multi-material food printing with complex internal structure suitable for conventional post-processing. In: International solid freeform fabrication symposium, Austin, pp SFF, 809–815

    Google Scholar 

  • Liu L, Ciftci ON (2021) Effects of high oil compositions and printing parameters on food paste properties and printability in 3D printing food processing model. J Food Eng 288:110135

    Article  CAS  Google Scholar 

  • Liu Z, Zhang M, Bhandari B, Wang Y (2017) 3D printing: printing precision and application in food sector. Trends Food Sci Technol 69(A):83–94

    Article  CAS  Google Scholar 

  • Liu Z, Bhandari B, Prakash S, Zhang M (2018) Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Res Int 111:534–543

    Article  PubMed  Google Scholar 

  • Liu Y, Tang T, Duan S, Qin Z, Li C, Zhang Z, Liu A, Wu D, Chen H et al (2020a) Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. LWT Food Sci Technol 127:109360

    Article  CAS  Google Scholar 

  • Liu Y, Tang T, Duan S, Qin Z, Zhao H, Wang M, Li C, Zhang Z, Liu A et al (2020b) Applicability of rice doughs as promising food materials in extrusion-based 3D printing. Food Bioprocess Technol 13(3):548–563

    Article  CAS  Google Scholar 

  • Manstan T, McSweeney MB (2019) Consumers’ attitudes towards and acceptance of 3D printed foods in comparison to conventional food products. Int J Food Sci Technol 55(1):1–9

    Google Scholar 

  • Mantihal S, Prakash S, Godoi FC, Bhandari B (2017) Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innov Food Sci Emerg Technol 44:21-29

    Article  Google Scholar 

  • Mantihal S, Kobun R, Lee BB (2020) 3D food printing of as the new way of preparing food: a review. Int J Gastron Food Sci 22:100260

    Article  Google Scholar 

  • Mehak-Jandyal OP, Malav N, Mehta MK, Pavan-Kumar RV, Wagh SK, Tanuj T (2021) 3D printing of meat: a new frontier of food from download to delicious: a review. Int J Curr Microbiol App Sci 10(3):2095–2111

    Google Scholar 

  • Mostafaei A, Kimes KA, Stevens EL, Toman J, Krimer YL, Ullakko K, Chmielus M (2017) Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam. Acta Mater 131:482–490

    Article  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Murray JM, Baxter IA (2003) Food acceptability and sensory evaluation. In: Food sciences and nutrition. Academic Press, Cambridge, pp 5130–5136

    Google Scholar 

  • Nachal N, Moses JA, Karthik P, Anandharamakrishnan C (2019) Applications of 3D printing in food processing. Food Eng Rev 11(3):123–141

    Article  CAS  Google Scholar 

  • NASA (2004) No pizza in space? Available from https://www.nasa.gov/audience/forstudents/k-4/home/F_No_Pizza_in_Space.html

  • NASA (2013) 3D printing: food in space. Available from https://www.nasa.gov/directorates/spacetech/home/feature_3d_food.html

  • NASA (2019) 3D printed prototype to enhance the space food system. Available from https://ntrs.nasa.gov/citations/20190033356

  • Nida S, Anukiruthika T, Moses JA, Anandharamakrishnan C (2021) 3D printing of grinding and milling fractions of rice husk. Waste Biomass Valoriz 12(1):81–90

    Article  CAS  Google Scholar 

  • Park SM, Kim HW, Park HJ (2019) Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. J Food Eng 271:109781

    Article  Google Scholar 

  • Payne CLR, Dobermann D, Forkes A, House J, Josephs J, McBride A, MĂĽller A, Quilliam RS, Soares S (2016) Insects as food and feed: European perspectives on recent research and future priorities. J Insects Food Feed 2(4):269–276

    Article  Google Scholar 

  • Pereira T, Barroso S, Gil MM (2021) Food texture design by 3D printing: a review. Foods 10(2):1–26

    Article  Google Scholar 

  • PĂ©rez B, Nykvist H, Brøgger AF, Larsen MB, Falkeborg MF (2019) Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: a review. Food Chem 287:249–257

    Article  PubMed  Google Scholar 

  • Pitayachaval P, Sanklong N, Thongrak A (2018) A review of 3D food printing technology. MATEC Web Conf 213:01012

    Article  CAS  Google Scholar 

  • Portanguen S, Tournayre P, Sicard J, Astruc T, Mirade PS (2019) Toward the design of functional foods and biobased products by 3D printing: a review. Trends Food Sci Technol 86:188–198

    Article  CAS  Google Scholar 

  • Pulatsu E, Lin M (2021) A review on customizing edible food materials into 3D printable inks: approaches and strategies. Trends Food Sci Technol 107:68–77

    Article  CAS  Google Scholar 

  • Pulatsu ET, Su JW, Lin J, Lin M (2020) Factors affecting 3D printing and post-processing capacity of cookie dough. Innov Food Sci Emerg Technol 62:102306

    Google Scholar 

  • Pusch K, Hinton TJ, Feinberg AW (2018) Large volume syringe pump extruder for desktop 3D printers. HardwareX 3(3):49–61

    Article  PubMed  Google Scholar 

  • Rando P, Ramaioli M (2021) Food 3D printing: effect of heat transfer on print stability of chocolate. J Food Eng 294:110415

    Article  CAS  Google Scholar 

  • Ricci I, Derossi A, Severini C (2019) 3D printed food from fruits and vegetables. In: Godoi FC, Bhandari BR, Prakash S, Zhang M (eds) Fundamentals of 3D food printing and applications. Academic Press, London, pp 117–149

    Chapter  Google Scholar 

  • Salloum G, Tekli J (2021) Automated and personalized nutrition health assessment, recommendation, and progress evaluation using fuzzy reasoning. Int J Hum-Comput Stud 151:102610

    Article  Google Scholar 

  • Severini C, Derossi A, Ricci I, Caporizzi R, Fiore A (2018) Printing a blend of fruit and vegetables. New advances on critical variables and shelf-life of 3D edible objects. J Food Eng 220:89–100

    Article  CAS  Google Scholar 

  • Singhal S, Rasane P, Kaur S, Garba U, Bankar A, Singh J, Gupta N (2020) 3D food printing: paving way towards novel foods. Ann Braz Sci Acad 92(3):20180737

    Article  Google Scholar 

  • Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) Rheological properties of rice dough for making rice bread. J Food Eng 62(1):37–45

    Article  Google Scholar 

  • Sridhar A, Blaudeck T, Baumann RR (2011) Inkjet printing as a key enabling technology for printed electronics. Materials 6(1):12–15

    CAS  Google Scholar 

  • Sun J, Peng Z, Yan L, Fuh JY, Hong GS (2015a) 3D food printing an innovative way of mass customization in food fabrication. Int J Bioprint 1(1):27–38

    Google Scholar 

  • Sun J, Peng Z, Zhou W, Fuh JYH, Hong GS, Chiu A (2015b) A review on 3D printing for customized food fabrication. Proc Manuf 1:308–319

    Google Scholar 

  • Sun J, Zhou W, Huang D, Fuh JYH, Hong GS, Geok S (2015c) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8(8):1605–1615

    Article  CAS  Google Scholar 

  • Sun J, Zhou W, Yan L, Huang D, Lin L (2018) Extrusion-based food printing for digitalized food design and nutrition control. J Food Eng 220:1–11

    Article  Google Scholar 

  • Tan C, Toh WY, Wong G, Li L (2018) Extrusion-based 3D food printing – materials and machines. Int J Bioprint 4(2):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng X, Zhang M, Bhandri B (2019) 3D printing of cordyceps flower powder. J Food Eng 107:2411–2502

    Google Scholar 

  • Terfansky ML, Thangavelu M (2013) 3D printing of food for space missions. In: Am Inst Aeronaut Astronaut Conference and Exposition, San Diego, California, pp 1–20

    Google Scholar 

  • Thangalakshmi S, Arora VK, Kaur BP, Malakar S (2021) Investigation on rice flour and jaggery paste as food material for extrusion-based 3D printing. J Food Process Preserv 45(4):1–12

    Article  Google Scholar 

  • Tian J, Zhang R, Wu Y, Xue P (2021) Additive manufacturing of wood flour/polyhydroxy-alkenoates (PHA) fully bio-based composites based on micro-screw extrusion system. Mater Des 199:109418

    Article  CAS  Google Scholar 

  • Tseng JW, Liu CY, Yen YK, Belkner J, Bremicker T, Liu BH, Sun T, Wang A (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221

    Article  CAS  Google Scholar 

  • Turabi E, Sumnu G, Sahin S (2008) Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocoll 22(2):305–312

    Article  CAS  Google Scholar 

  • Vadodaria S, Mills T (2020) Jetting-based 3D printing of edible materials. Food Hydrocoll 106:105857

    Article  CAS  Google Scholar 

  • van der Weele C, Driessen C (2013) Emerging profiles for cultured meat; ethics through and as design. Animals 3(3):647–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Vancauwenberghe V, Baiye Mfortaw Mbong V, Vanstreels E, Verboven P, Lammertyn J, Nicolai B (2019) 3D printing of plant tissue for innovative food manufacturing: encapsulation of alive plant cells into pectin – based bioink. J Food Eng 263:454–464

    Article  CAS  Google Scholar 

  • Vergenes B (2019) The Effect of processing conditions on the dispersion and microstructure of organoclay/polypropylene nanocomposites in twin-screw extrusion. In: Kenig S (ed) Processing of polymer nanocomposite. Carl Hanser Verlag GmbH & Company, KG, Munich, pp 1–28

    Google Scholar 

  • Vidigal MCTR, Minim VPR, Simiqueli AA, Souza PHP, Balbino DF, Minim LA (2015) Food technology neophobia and consumer attitudes towards foods produced by new and conventional technologies: a case study in Brazil. LWT Food Sci Technol 60(2):832–840

    Article  CAS  Google Scholar 

  • Wang L, Zhang M, Bhandari B, Yang C (2018) Investigation on fish surimi gel as promising food material for 3D printing. J Food Eng 220:101–108

    Article  CAS  Google Scholar 

  • Wegrzyn TF, Golding M, Archer RH (2012) Food layered manufacture: a new process for constructing solid foods. Trends Food Sci Technol 27(2):66–72

    Article  CAS  Google Scholar 

  • Wijnen B, Hunt EJ, Anzalone GC, Pearce JM (2014) Open-source syringe pump library. PLoS ONE 9(9):e107216

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Anukiruthika T, Moses JA, Anandharamakrishnan C (2020) Customized shapes for chicken meat–based products: feasibility study on 3D-printed nuggets. Food Bioprocess Technol 13(11):1968–1983

    Article  CAS  Google Scholar 

  • Yang F, Zhang M, Bhandari B, Liu Y (2018) Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT Food Sci Technol 87:67–76

    Article  CAS  Google Scholar 

  • Zargaraan A, Rastmanesh R, Fadavi G, Zayeri F, Mohammadifar MA (2013) Rheological aspects of dysphagia-oriented food products: a mini review. Food Sci Human Wellness 2(3-4):173–178

    Article  Google Scholar 

  • Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1-2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lou Y, Schutyser MAI (2018) 3D printing of cereal-based food structures containing probiotics. Food Struct 18:14–22

    Article  Google Scholar 

  • Zhu S, Stieger MA, van der Goot AJ, Schutyser MAI (2019) Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behavior. Innov Food Sci Emerg Technol 58:102214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruvengadam Subramaniyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kadirvel, V., Raja, K., Subramaniyan, T. (2023). Scope of Three-Dimensional Printing for Fabrication of Foods. In: Malik, J.A., Goyal, M.R., Kumari, A. (eds) Food Process Engineering and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6831-2_3

Download citation

Publish with us

Policies and ethics

Navigation