Science and Technology of Shellacs

  • Reference work entry
  • First Online:
Handbook of Biomass

Abstract

The commercial form of lac resin, known as shellac, is composed of low molecular weight polyester macromolecules consisting inter- and intra-esters of polyhydroxy aliphatic and sesquiterpene acids. The exceptional qualities of shellac provided widespread and open applications in various fields, especially in the food and pharmaceutical industries, for ages. Earlier, it was used primarily for coatings, furnishing, and wall paintings, electrical insulations, and dental baseplates. But the new world has seen an increasing shift in the applications of shellac due to its adaptability, biocompatibility, structural modification capability, solubility, and thermoplasticity. The shift in the processing techniques from traditional methods accelerated shellac processing which is witnessed in the development and application of shellac-based materials in green electronic components, 3D printing, dental composites, electronic sensors, and desensitizing agents. Not only shellac but the value-added by-products (especially lac dye and lac wax) formed during the processing of lac resin to shellac had economic importance. This chapter provides an insight into the processed form of lac resin, shellac; and its various sources, forms, processing techniques, properties, structural modification, nanofibers of shellacs, and different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • X. Aeby, A. Poulin, G. Siqueira, M.K. Hausmann, G. Nyström, Fully 3D printed and disposable paper super capacitors. Adv. Mater. 33(26), 2101328 (2021)

    Article  CAS  Google Scholar 

  • A. Ahuja, V. Kumar Rastogi, Spray coating of edible insect waxes for liquid food packaging. Appl. Surf. Sci. 624, 157150 (2023). https://doi.org/10.1016/j.apsusc.2023.157150

    Article  CAS  Google Scholar 

  • A. Ahuja, V.K. Rastogi, Shellac: from isolation to modification and its untapped potential in the packaging application. Sustainability 15(4), 3110 (2023). https://doi.org/10.3390/su15043110. MDPI

    Article  CAS  Google Scholar 

  • A. Azouka, R. Huggett, A. Harrison, The production of shellac and its general and dental uses: a review. J. Oral Rehabil. 20(4), 393–400 (1993). https://doi.org/10.1111/j.1365-2842.1993.tb01623.x

    Article  CAS  PubMed  Google Scholar 

  • M.G. Bah, H.M. Bilal, J. Wang, Fabrication and application of complex microcapsules: a review. Soft Matter 16(3), 570–590 (2020). https://doi.org/10.1039/C9SM01634A

    Article  CAS  PubMed  Google Scholar 

  • P.K. Banerjee, B.C. Srivastava, S. Kumar, Cohesive-energy density of shellac. Polymer 23(3), 417–421 (1982)

    Article  CAS  Google Scholar 

  • L.M. Bellan, M. Pearsall, D.M. Cropek, R. Langer, A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv. Mater. 24(38), 5187–5191 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Buch, M. Penning, E. Wächtersbach, M. Maskos, P. Langguth, Investigation of various shellac grades: additional analysis for identity. Drug Dev. Ind. Pharm. 35(6), 694–703 (2009). https://doi.org/10.1080/03639040802563253

    Article  CAS  PubMed  Google Scholar 

  • D. Chen, C.-X. Zhao, C. Lagoin, M. Hai, L.R. Arriaga, S. Koehler, A. Abbaspourrad, D.A. Weitz, Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colour. R. Soc. Open Sci. 4(12), 170919 (2017). https://doi.org/10.1098/rsos.170919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Chitravathi, O.P. Chauhan, P.S. Raju, Postharvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings. Postharvest Biol. Technol. 92, 146–148 (2014). https://doi.org/10.1016/j.postharvbio.2014.01.021

    Article  CAS  Google Scholar 

  • C. Coelho, R. Nanabala, M. Ménager, S. Commereuc, V. Verney, Molecular changes during natural biopolymer ageing – the case of shellac. Polym. Degrad. Stab. 97(6), 936–940 (2012)

    Article  CAS  Google Scholar 

  • A.S. Doost, D.R.A. Muhammad, C.V. Stevens, K. Dewettinck, P. Van der Meeren, Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocoll. 83, 190–201 (2018)

    Article  Google Scholar 

  • J. Derry, Investigating Shellac: Documenting the Process, Defining the Product.: A study on the processing methods of Shellac, and the analysis of selected physical and chemical characteristics (Master’s thesis) (2012)

    Google Scholar 

  • Y. Farag, C.S. Leopold, Physicochemical properties of various shellac types. Dissolut. Technol. 16(2), 33–39 (2009)

    Article  CAS  Google Scholar 

  • J. Gao, K. Li, J. Xu, W. Zhang, J. Ma, L. Liu, Y. Sun, H. Zhang, K. Li, Unexpected rheological behavior of a hydrophobic associative shellac-based oligomeric food thickener. J. Agric. Food Chem. 66(26), 6799–6805 (2018)

    Article  CAS  PubMed  Google Scholar 

  • S. Ghoshal, M.A. Khan, F. Gul-E-Noor, R.A. Khan, Gamma radiation induced biodegradable shellac films treated by acrylic monomer and ethylene glycol. J. Macromol. Sci. A Pure Appl. Chem. 46(10), 975–982 (2009)

    Article  CAS  Google Scholar 

  • D.N. Goswami, The dielectric behavior of natural resin shellac. J. Appl. Polym. Sci. 23(2), 529–537 (1979)

    Article  CAS  Google Scholar 

  • A. Harrison, R. Huggett, A. Azouka, Some physical and mechanical properties of shellac dental baseplate material. J. Oral Rehabil. 22(7), 509–513 (1995). https://doi.org/10.1111/j.1365-2842.1995.tb01196.x

    Article  CAS  PubMed  Google Scholar 

  • J.M. Henrique, J.R. Camargo, G.G. de Oliveira, J.S. Stefano, B.C. Janegitz, Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem. J. 170, 106701 (2021)

    Article  Google Scholar 

  • S.S. Hindi, U.M. Dawoud, K.A. Asiry, Bioplastic floss of a novel microwave-thermospun shellac: synthesis and bleaching for some dental applications. Polymers 15(1), 142 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • M. Irimia-Vladu, E.D. Głowacki, G. Schwabegger, L. Leonat, H.Z. Akpinar, H. Sitter, S. Bauer, N.S. Sariciftci, Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem. 15(6), 1473–1476 (2013). https://doi.org/10.1039/c3gc40388b

  • G. Jiménez-Cadena, J. Riu, F.X. Rius, Gas sensors based on nanostructured materials. Analyst 132(11), 1083 (2007). https://doi.org/10.1039/b704562j

    Article  CAS  PubMed  Google Scholar 

  • L. Kong, E. Amstad, M. Hai, X. Ke, D. Chen, C.-X. Zhao, D.A. Weitz, Biocompatible microcapsules with a water core templated from single emulsions. Chin. Chem. Lett. 28(9), 1897–1900 (2017). https://doi.org/10.1016/j.cclet.2017.07.017

    Article  CAS  Google Scholar 

  • L. Kong, R. Chen, X. Wang, C.-X. Zhao, Q. Chen, M. Hai, D. Chen, Z. Yang, D.A. Weitz, Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks. Lab Chip 19(12), 2089–2095 (2019). https://doi.org/10.1039/C9LC00240E

    Article  CAS  PubMed  Google Scholar 

  • S. Kumar, M. Karmacharya, S.R. Joshi, O. Gulenko, J. Park, G.-H. Kim, Y.-K. Cho, Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett. 21(1), 337–343 (2021). https://doi.org/10.1021/acs.nanolett.0c03725

    Article  CAS  PubMed  Google Scholar 

  • P.W. Labuschagne, B. Naicker, L. Kalombo, Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique. Int. J. Pharm. 499(1–2), 205–216 (2016)

    Article  CAS  PubMed  Google Scholar 

  • K. Li, Z. Pan, C. Guan, H. Zheng, K. Li, H. Zhang, A tough self-assembled natural oligomer hydrogel based on nano-size vesicle cohesion. RSC Adv. 6(40), 33547–33553 (2016). https://doi.org/10.1039/C6RA03720H

    Article  CAS  Google Scholar 

  • K. Li, B. Tang, W. Zhang, Z. Shi, X. Tu, K. Li, J. Xu, J. Ma, L. Liu, H. Zhang, Formation mechanism of bleaching damage for a biopolymer: differences between sodium hypochlorite and hydrogen peroxide bleaching methods for shellac. ACS Omega 5(35), 22551–22559 (2020). https://doi.org/10.1021/acsomega.0c03178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Limmatvapirat, D. Panchapornpon, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan, S. Puttipipatkhachorn, Formation of shellac succinate having improved enteric film properties through dry media reaction. Eur. J. Pharm. Biopharm. 70(1), 335–344 (2008). https://doi.org/10.1016/J.EJPB.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  • M. Luangtana-Anan, S. Limmatvapirat, J. Nunthanid, C. Wanawongthai, R. Chalongsuk, S. Puttipipatkhachorn, Effect of salts and plasticizers on stability of shellac film. J. Agric. Food Chem. 55(3), 687–692 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Q. Luo, K. Li, J. Xu, K. Li, H. Zheng, L. Liu, H. Zhang, Y. Sun, Novel biobased sodium shellac for wrap** disperse multiscale emulsion particles. J. Agric. Food Chem. 64(49), 9374–9380 (2016). https://doi.org/10.1021/acs.jafc.6b04417

    Article  CAS  PubMed  Google Scholar 

  • A. Mondal, M.A. Sohel, A.P. Mohammed, A.S. Anu, S. Thomas, A. SenGupta, Crystallization study of shellac investigated by differential scanning calorimetry. Polym. Bull. 77, 5127–5143 (2020)

    Article  CAS  Google Scholar 

  • A.R. Patel, P.S. Rajarethinem, A. Grędowska, O. Turhan, A. Lesaffer, W.H. De Vos, D. Van de Walle, K. Dewettinck, Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Funct. 5(4), 645–652 (2014)

    Article  CAS  PubMed  Google Scholar 

  • N. Pearnchob, A. Dashevsky, J. Siepmann, R. Bodmeier, Shellac used as coating material for solid pharmaceutical dosage forms: understanding the effects of formulation and processing variables. STP Pharma Sci. 13(6), 387–396 (2003)

    CAS  Google Scholar 

  • A. Poulin, X. Aeby, G. Siqueira, G. Nyström, Versatile carbon-loaded shellac ink for disposable printed electronics. Sci. Rep. 11(1), 23784 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E. Pramono, S.B. Utomo, V. Wulandari, W.A. Zahrotul, F. Clegg, The effect of polyethylene glycol on shellac stability. IOP Conf. Ser. Mater. Sci. Eng. 107(1), 012066 (2016)

    Google Scholar 

  • B. Qussi, W.G. Suess, The influence of different plasticizers and polymers on the mechanical and thermal properties, porosity and drug permeability of free shellac films. Drug Dev. Ind. Pharm. 32(4), 403–412 (2006)

    Article  CAS  PubMed  Google Scholar 

  • W.W. Rahardjo, E. Pujiyanto, B.A. Saputro, A. Majid, J. Triyono, Agave Cantula fiber-reinforced biocomposites of hydroxyapatite/shellac as a dental material. J. Nat. Fibers 19(16), 13012–13024 (2022). https://doi.org/10.1080/15440478.2022.2084205

    Article  CAS  Google Scholar 

  • U. Rivers, Shayne Rivers, Wick Umney. Conservation of Furniture. (2003)

    Google Scholar 

  • Z. Ruguo, Z. Hua, Z. Hong, F. Ying, L. Kun, Z. Wenwen, Thermal analysis of four insect waxes based on differential scanning calorimetry (DSC). Proc. Eng. 18, 101–106 (2011)

    Article  Google Scholar 

  • K.K. Sharma, A.R. Chowdhury, S. Srivastava, Chemistry and applications of lac and its by-product, in Natural Materials and Products from Insects: Chemistry and Applications, (Springer International Publishing, 2020), pp. 21–37. https://doi.org/10.1007/978-3-030-36610-0_2

    Chapter  Google Scholar 

  • J. Širc, R. Hobzova, N. Kostina, M. Munzarová, M. Juklíčková, M. Lhotka, Š. Kubinová, A. Zajícová, J. Michálek, Morphological characterization of nanofibers: methods and application in practice. J. Nanomater. 2012, 1–14 (2012)

    Article  Google Scholar 

  • R. Sulthan, A. Reghunadhan, S. Sambhudevan, A new era of chitin synthesis and dissolution using deep eutectic solvents- comparison with ionic liquids. J. Mol. Liq. 380, 121794 (2023). https://doi.org/10.1016/j.molliq.2023.121794

    Article  CAS  Google Scholar 

  • T. Thammachat, P. Sriamornsak, M. Luangtana-Anan, J. Nunthanid, C. Limmatvapirat, S. Limmatvapirat, Preparation and characterization of shellac fiber as a novel material for controlled drug release. Adv. Mater. Res. 152, 1232–1235 (2011)

    Google Scholar 

  • N. Thombare et al., Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int. J. Biol. Macromol. 215, 203–223 (2022). https://doi.org/10.1016/j.ijbiomac.2022.06.090

  • D.P. The, F. Debeaufort, D. Luu, A. Voilley, Moisture barrier, wetting and mechanical properties of shellac/agar or shellac/cassava starch bilayer bio-membrane for food applications. J. Membr. Sci. 325(1), 277–283 (2008)

    Article  CAS  Google Scholar 

  • M.L. Weththimuni, D. Capsoni, M. Malagodi, C. Milanese, M. Licchelli, Shellac/nanoparticles dispersions as protective materials for wood. Appl. Phys. A 122(12), 1058 (2016). https://doi.org/10.1007/s00339-016-0577-7

    Article  CAS  Google Scholar 

  • M.L. Weththimuni, C. Milanese, M. Licchelli, M. Malagodi, Improving the protective properties of shellac-based varnishes by functionalized nanoparticles. Coatings 11(4), 419 (2021). https://doi.org/10.3390/coatings11040419

    Article  CAS  Google Scholar 

  • Y. Yuan, N. He, L. Dong, Q. Guo, X. Zhang, B. Li, L. Li, Multiscale shellac-based delivery systems: from macro- to nanoscale. ACS Nano 15(12), 18794–18821 (2021a). https://doi.org/10.1021/acsnano.1c07121

    Article  CAS  PubMed  Google Scholar 

  • Y. Yuan, N. He, Q. Xue, Q. Guo, L. Dong, M.H. Haruna, X. Zhang, B. Li, L. Li, Shellac: a promising natural polymer in the food industry. Trends Food Sci. Technol. 109, 139–153 (2021b). https://doi.org/10.1016/j.tifs.2021.01.031

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedha Sambhudevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rashid Sulthan, K., Hema, S., Chandran, G.U., Sajith, M., Ananthika, V., Sambhudevan, S. (2024). Science and Technology of Shellacs. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-99-6727-8_49

Download citation

Publish with us

Policies and ethics

Navigation