Nonlinear Soft X-Ray Spectroscopy

  • Chapter
  • First Online:
Nonlinear X-Ray Spectroscopy for Materials Science

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 246))

  • 268 Accesses

Abstract

The history and current state of the field of soft X-ray nonlinear optics is discussed. The development of soft X-ray nonlinear optics has been largely based upon the earlier work done with visible and infrared spectroscopy. While nonlinear optics in those frequency regimes are relatively mature today, soft X-ray nonlinear optics is a young field. This delayed development was due to the lack of intense ultrafast X-ray light sources, but with the recent rise of X-ray free electron lasers and other intense X-ray sources, there has been an explosion in the field. The specific soft X-ray nonlinear optics techniques that have been employed so far are discussed in detail and the underlying physical principles are discussed. These include non-sequential multiple-photon absorption, stimulated emission to drive lasing, and various forms of stimulated Raman scattering. These techniques have enabled new measurements that were previously infeasible, providing access to dipole forbidden states, driving anisotropic X-ray emission, and allowing for the understanding of excited state surfaces in an unprecedented way. Additionally, four wave mixing has been demonstrated and a dedicated four wave beamline built for the study of complex phenomena such as diffusional dynamics. By performing four wave mixing in the soft X-ray region, one accesses particularly large momentum transfer and thus spatially small volumes. Second harmonic generation has also been demonstrated in the soft X-ray region, allowing for the study of symmetry breaking and surfaces in materials ranging from batteries to graphite. This technique has recently been extended to a variation of sum frequency generation, where the soft X-ray beam is mixed with a visible laser pulse and has been shown to be a sensitive probe of charge localization. Finally, the available computational methods which can be used to model and understand these phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Hollas, Modern Spectroscopy, 4th edn. (Wiley, Chichester, Hoboken, NJ, 2004)

    Google Scholar 

  2. W. Kaiser, C.G.B. Garrett, Two-photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 7, 229 (1961)

    Article  ADS  Google Scholar 

  3. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  4. U. Keller, Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Springer, Cham, 2021)

    Book  Google Scholar 

  5. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Amsterdam, Boston, 2008)

    Google Scholar 

  6. R.K. Lam et al., Soft X-ray second harmonic generation as an interfacial probe. Phys. Rev. Lett. 120, 023901 (2018)

    Article  ADS  Google Scholar 

  7. S. Yamamoto et al., Element selectivity in second-harmonic generation of GaFeO3 by a soft-X-ray free-electron laser. Phys. Rev. Lett. 120, 223902 (2018)

    Article  ADS  Google Scholar 

  8. B. Weigelin, G.-J. Bakker, P. Friedl, Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. (2016). https://doi.org/10.1242/jcs.152272

  9. H. Rottke et al., Probing electron and hole colocalization by resonant four-wave mixing spectroscopy in the extreme ultraviolet. Sci. Adv. 8, eabn5127 (2022)

    Google Scholar 

  10. E. Shwartz, S. Shwartz, Difference-frequency generation of optical radiation from two-color X-ray pulses. Opt. Express 23, 7471 (2015)

    Article  ADS  Google Scholar 

  11. T. Helk, M. Zürch, C. Spielmann, Perspective: towards single shot time-resolved microscopy using short wavelength table-top light sources. Struct. Dyn. 6, 010902 (2019)

    Article  Google Scholar 

  12. Y. Fu, K. Nishimura, R. Shao, A. Suda, K. Midorikawa, P. Lan, E.J. Takahashi, High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Commun. Phys. 3, 1 (2020)

    Article  Google Scholar 

  13. A. Schori, C. Bömer, D. Borodin, S.P. Collins, B. Detlefs, M. Moretti Sala, S. Yudovich, S. Shwartz, Parametric down-conversion of X rays into the optical regime. Phys. Rev. Lett. 119, 253902 (2017)

    Google Scholar 

  14. B. Adams, Y. Nishino, D.V. Novikov, G. Materlik, D.M. Mills, Parametric down conversion of X-rays, recent experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 467–468, 1019 (2001)

    Article  ADS  Google Scholar 

  15. F. Bencivenga et al., Four-wave mixing experiments with extreme ultraviolet transient gratings. Nature 520, 7546 (2015)

    Article  Google Scholar 

  16. F. Bencivenga et al., Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. Sci. Adv. 5, eaaw5805 (2019)

    Google Scholar 

  17. G. Doumy et al., Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011)

    Article  ADS  Google Scholar 

  18. H. Hasegawa, E.J. Takahashi, Y. Nabekawa, K.L. Ishikawa, K. Midorikawa, Multiphoton ionization of He by using intense high-order harmonics in the soft-X-ray region. Phys. Rev. A 71, 023407 (2005)

    Article  ADS  Google Scholar 

  19. M. Beye, S. Schreck, F. Sorgenfrei, C. Trabant, N. Pontius, C. Schüßler-Langeheine, W. Wurth, A. Föhlisch, Stimulated X-ray emission for materials science. Nature 501, 7466 (2013)

    Article  Google Scholar 

  20. D.J. Higley et al., Femtosecond X-ray induced changes of the electronic and magnetic response of solids from electron redistribution. Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  21. L. Mercadier et al., Evidence of extreme ultraviolet superfluorescence in xenon. Phys. Rev. Lett. 123, 023201 (2019)

    Article  ADS  Google Scholar 

  22. J.R. Harries et al., Superfluorescence, free-induction decay, and four-wave mixing: propagation of free-electron laser pulses through a dense sample of helium ions. Phys. Rev. Lett. 121, 263201 (2018)

    Article  ADS  Google Scholar 

  23. C. Weninger, M. Purvis, D. Ryan, R.A. London, J.D. Bozek, C. Bostedt, A. Graf, G. Brown, J.J. Rocca, N. Rohringer, Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013)

    Article  ADS  Google Scholar 

  24. U. Eichmann et al., Photon-recoil imaging: expanding the view of nonlinear X-ray physics. Science 369, 1630 (2020)

    Article  ADS  Google Scholar 

  25. J. Chen, C.-L. Hu, F. Kong, J.-G. Mao, High-performance second-harmonic-generation (SHG) materials: new developments and new strategies. Acc. Chem. Res. 54, 2775 (2021)

    Article  Google Scholar 

  26. F.J. Duarte (ed.), Tunable Laser Applications, 3rd edn. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2016)

    Google Scholar 

  27. Y.R. Shen, The Principles of Nonlinear Optics, Wiley classics library edn. (Wiley-Interscience, Hoboken, NJ, 2003)

    Google Scholar 

  28. J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973 (1965)

    Article  ADS  Google Scholar 

  29. S.A. Akhmanov, A.I. Kovrigin, A.S. Piskarskas, V.V. Fadeev, R.V. Khokhlov, Observation of parametric amplification in the optical range. Sov. J. Exp. Theor. Phys. Lett. 2, 191 (1965)

    ADS  Google Scholar 

  30. L. Carrion, J.-P. Girardeau-Montaut, Development of a simple model for optical parametric generation. J. Opt. Soc. Am. B JOSAB 17, 78 (2000)

    Google Scholar 

  31. F. Hofmann, M.P. Short, C.A. Dennett, Transient grating spectroscopy: an ultrarapid, nondestructive materials evaluation technique. MRS Bull. 44, 392 (2019)

    Article  ADS  Google Scholar 

  32. E. Poem, A. Golenchenko, O. Davidson, O. Arenfrid, R. Finkelstein, O. Firstenberg, Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express OE 28, 32738 (2020)

    Article  ADS  Google Scholar 

  33. P. Weinberger, John Kerr and his effects found in 1877 and 1878. Philos. Mag. Lett. 88, 897 (2008)

    Article  ADS  Google Scholar 

  34. M. Protopapas, C.H. Keitel, P.L. Knight, Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  35. C.A. Hoffman, R.G. Driggers, Encyclopedia of Optical and Photonic Engineering, 2nd edn. (CRC Press, Boca Raton, FL, 2016)

    Google Scholar 

  36. C. Bostedt, S. Boutet, D.M. Fritz, Z. Huang, H.J. Lee, H.T. Lemke, A. Robert, W.F. Schlotter, J.J. Turner, G.J. Williams, Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016)

    Article  ADS  Google Scholar 

  37. M. Fuchs et al., Anomalous nonlinear X-ray Compton scattering. Nat. Phys. 11, 11 (2015)

    Article  Google Scholar 

  38. T.E. Glover et al., X-ray and optical wave mixing. Nature 488, 7413 (2012)

    Article  Google Scholar 

  39. S. Shwartz et al., X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014)

    Article  ADS  Google Scholar 

  40. V. Honkimäki, J. Sleight, P. Suortti, Characteristic X-ray flux from sealed Cr, Cu, Mo, Ag and W tubes. J. Appl. Cryst. 23, 5 (1990)

    Google Scholar 

  41. V. Veksler, Concerning some new methods of acceleration of relativistic particles. Phys. Rev. 69, 244 (1946)

    Article  ADS  Google Scholar 

  42. E.M. McMillan, The synchrotron—a proposed high energy particle accelerator. Phys. Rev. 68, 143 (1945)

    Article  ADS  Google Scholar 

  43. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H.C. Pollock, Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947)

    Article  ADS  Google Scholar 

  44. J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, 2nd edn. (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  45. S. Boutet, M. Yabashi, X-ray free electron lasers and their applications, in X-Ray Free Electron Lasers: A Revolution in Structural Biology, ed. by S. Boutet, P. Fromme, M.S. Hunter (Springer International Publishing, Cham, 2018), pp. 1–21

    Chapter  Google Scholar 

  46. G. Margaritondo, P. Rebernik Ribic, A simplified description of X-ray free-electron lasers. J. Synchrotron Radiat. 18, 2 (2011)

    Google Scholar 

  47. J. Duris et al., Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 1 (2020)

    Article  Google Scholar 

  48. E. Allaria et al., Two-stage seeded soft-X-ray free-electron laser. Nat. Photon. 7, 11 (2013)

    Article  Google Scholar 

  49. I. Nam et al., High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nat. Photon. 15, 6 (2021)

    Google Scholar 

  50. I. Inoue et al., Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photon. 13, 5 (2019)

    Article  Google Scholar 

  51. E. Allaria et al., The FERMI free-electron lasers. J. Synchrotron Radiat. 22, 3 (2015)

    Article  Google Scholar 

  52. G. Penco et al., Nonlinear harmonics of a seeded free-electron laser as a coherent and ultrafast probe to investigate matter at the water window and beyond. Phys. Rev. A 105, 053524 (2022)

    Article  ADS  Google Scholar 

  53. B.W. Adams, D. DeCiccio, M. Michon, P. Chmielniak, T. Parkman, G. Diebold, K. Bisogno, C. Rose-Petruck, LPXS: a high-performance, recirculating liquid-metal laser-driven plasma X-ray source, in Advances in X-Ray/EUV Optics and Components XVI, vol. 11837 (SPIE, 2021), pp. 59–69

    Google Scholar 

  54. T. Saule et al., High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 1 (2019)

    Google Scholar 

  55. J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, London, 2011)

    Google Scholar 

  56. G. Gauglitz, D.S. Moore (eds.), Handbook of Spectroscopy, 2nd, completely revised and enlarged edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014)

    Google Scholar 

  57. J.D. Smith, C.D. Cappa, K.R. Wilson, B.M. Messer, R.C. Cohen, R.J. Saykally, Energetics of hydrogen bond network rearrangements in liquid water. Science 306, 851 (2004)

    Article  ADS  Google Scholar 

  58. U. Bergmann, P. Glatzel, X-ray emission spectroscopy. Photosynth. Res. 102, 255 (2009)

    Article  Google Scholar 

  59. G. Smolentsev, A.V. Soldatov, J. Messinger, K. Merz, T. Weyhermüller, U. Bergmann, Y. Pushkar, J. Yano, V.K. Yachandra, P. Glatzel, X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes. J. Am. Chem. Soc. 131, 13161 (2009)

    Article  Google Scholar 

  60. F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008)

    Google Scholar 

  61. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013)

    Google Scholar 

  62. L. Young et al., Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 7302 (2010)

    Article  Google Scholar 

  63. M. Hoener et al., Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010)

    Article  ADS  Google Scholar 

  64. H. Yoneda, Y. Inubushi, M. Yabashi, T. Katayama, T. Ishikawa, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, H. Kitamura, Saturable absorption of intense hard X-rays in iron. Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  65. L. Hoffmann et al., Saturable absorption of free-electron laser radiation by graphite near the carbon K-edge, ar**v:2112.12585 [Cond-Mat, Physics:Physics] (2022)

  66. B. Nagler et al., Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 5, 9 (2009)

    Google Scholar 

  67. H. Yoneda et al., Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region. Opt. Express OE 17, 23443 (2009)

    Article  ADS  Google Scholar 

  68. M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson, Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244 (2009)

    Article  Google Scholar 

  69. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238 (2007)

    Article  Google Scholar 

  70. A. Hayat, A. Nevet, P. Ginzburg, M. Orenstein, Applications of two-photon processes in semiconductor photonic devices: invited review. Semicond. Sci. Technol. 26, 083001 (2011)

    Article  ADS  Google Scholar 

  71. M. Rumi, J.W. Perry, Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2, 451 (2010)

    Article  Google Scholar 

  72. J.H. Eberly, P. Lambropoulos (eds.), Multiphoton Processes: Proceedings of an International Conference at the University of Rochester, Rochester, N.Y., June 6–9, 1977 (Wiley, New York, 1978)

    Google Scholar 

  73. Y. Nabekawa, H. Hasegawa, E.J. Takahashi, K. Midorikawa, Production of doubly charged helium ions by two-photon absorption of an intense sub-10-fs soft X-ray pulse at 42 eV photon energy. Phys. Rev. Lett. 94, 043001 (2005)

    Article  ADS  Google Scholar 

  74. N. Miyamoto, M. Kamei, D. Yoshitomi, T. Kanai, T. Sekikawa, T. Nakajima, S. Watanabe, Observation of two-photon above-threshold ionization of rare gases by XUV harmonic photons. Phys. Rev. Lett. 93, 083903 (2004)

    Article  ADS  Google Scholar 

  75. R.K. Lam et al., Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge. Chem. Phys. Lett. 703, 112 (2018)

    Article  ADS  Google Scholar 

  76. N. Rohringer et al., Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488 (2012)

    Google Scholar 

  77. T. Kroll et al., Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020)

    Article  ADS  Google Scholar 

  78. T. Kroll et al., Stimulated X-ray emission spectroscopy in transition metal complexes. Phys. Rev. Lett. 120, 133203 (2018)

    Article  ADS  Google Scholar 

  79. Y. Zhang et al., Generation of intense phase-stable femtosecond hard X-ray pulse pairs. Proc. Natl. Acad. Sci. 119, e2119616119 (2022)

    Article  Google Scholar 

  80. A.C. Thompson, X-Ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, 2001)

    Google Scholar 

  81. D.J. Higley et al., Stimulated resonant inelastic X-ray scattering in a solid. Commun. Phys. 5, 1 (2022)

    Article  ADS  Google Scholar 

  82. J. Stöhr, A. Scherz, Creation of X-ray transparency of matter by stimulated elastic forward scattering. Phys. Rev. Lett. 115, 107402 (2015)

    Article  ADS  Google Scholar 

  83. B. Wu et al., Elimination of X-ray diffraction through stimulated X-ray transmission. Phys. Rev. Lett. 117, 027401 (2016)

    Article  ADS  Google Scholar 

  84. Z. Chen et al., Ultrafast self-induced X-ray transparency and loss of magnetic diffraction. Phys. Rev. Lett. 121, 137403 (2018)

    Article  ADS  Google Scholar 

  85. N. Rohringer, X-ray Raman scattering: a building block for nonlinear spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20170471 (2019)

    Article  ADS  Google Scholar 

  86. V. Kimberg et al., Stimulated X-ray Raman scattering—a critical assessment of the building block of nonlinear X-ray spectroscopy. Faraday Discuss. 194, 305 (2016)

    Article  ADS  Google Scholar 

  87. J.T. O’Neal et al., Electronic population transfer via impulsive stimulated X-ray Raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020)

    Article  ADS  Google Scholar 

  88. C. Masciovecchio et al., EIS: the scattering beamline at FERMI. J. Synchrotron Radiat. 22, 3 (2015)

    Article  Google Scholar 

  89. M.P. Short, C.A. Dennett, S.E. Ferry, Y. Yang, V.K. Mishra, J.K. Eliason, A. Vega-Flick, A.A. Maznev, K.A. Nelson, Applications of transient grating spectroscopy to radiation materials science. JOM 67, 1840 (2015)

    Article  Google Scholar 

  90. J. Janušonis, T. Jansma, C.L. Chang, Q. Liu, A. Gatilova, A.M. Lomonosov, V. Shalagatskyi, T. Pezeril, V.V. Temnov, R.I. Tobey, Transient grating spectroscopy in magnetic thin films: simultaneous detection of elastic and magnetic dynamics. Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  91. A.A. Maznev et al., Propagation of THz acoustic wave packets in GaN at room temperature. Appl. Phys. Lett. 112, 061903 (2018)

    Article  ADS  Google Scholar 

  92. L. Foglia et al., First evidence of purely extreme-ultraviolet four-wave mixing. Phys. Rev. Lett. 120, 263901 (2018)

    Article  ADS  Google Scholar 

  93. F. Bencivenga et al., Four-wave-mixing experiments with seeded free electron lasers. Faraday Discuss. 194, 283 (2016)

    Article  ADS  Google Scholar 

  94. R. Bohinc et al., Nonlinear XUV-optical transient grating spectroscopy at the Si L2,3–edge. Appl. Phys. Lett. 114, 181101 (2019)

    Article  ADS  Google Scholar 

  95. A.A. Maznev et al., Generation of coherent phonons by coherent extreme ultraviolet radiation in a transient grating experiment. Appl. Phys. Lett. 113, 221905 (2018)

    Article  ADS  Google Scholar 

  96. D. Naumenko et al., Thermoelasticity of nanoscale silicon carbide membranes excited by extreme ultraviolet transient gratings: implications for mechanical and thermal management. ACS Appl. Nano Mater. 2, 5132 (2019)

    Article  Google Scholar 

  97. W. Cao, E.R. Warrick, A. Fidler, S.R. Leone, D.M. Neumark, Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: detection of electronic coherences. Phys. Rev. A 94, 021802 (2016)

    Article  ADS  Google Scholar 

  98. T. Ding et al., Time-resolved four-wave-mixing spectroscopy for inner-valence transitions. Opt. Lett. 41, 709 (2016)

    Article  ADS  Google Scholar 

  99. K.A. Tran, K.B. Dinh, P. Hannaford, L.V. Dao, Phase-matched nonlinear wave-mixing processes in XUV region with multicolor lasers. Appl. Opt. 58, 2540 (2019)

    Article  ADS  Google Scholar 

  100. W. Cao, E.R. Warrick, A. Fidler, D.M. Neumark, S.R. Leone, Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: toward multidimensional spectroscopy involving XUV excitations. Phys. Rev. A 94, 053846 (2016)

    Article  ADS  Google Scholar 

  101. A.P. Fidler, E.R. Warrick, H.J.B. Marroux, E. Bloch, D.M. Neumark, S.R. Leone, Self-heterodyned detection of dressed state coherences in helium by noncollinear extreme ultraviolet wave mixing with attosecond pulses. J. Phys. Photon. 2, 034003 (2020)

    Article  Google Scholar 

  102. A.P. Fidler, H.J.B. Marroux, E.R. Warrick, E. Bloch, W. Cao, S.R. Leone, D.M. Neumark, Autoionization dynamics of (2P1/2)ns/d states in krypton probed by noncollinear wave mixing with attosecond extreme ultraviolet and few-cycle near infrared pulses. J. Chem. Phys. 151, 114305 (2019)

    Article  ADS  Google Scholar 

  103. A.P. Fidler, S.J. Camp, E.R. Warrick, E. Bloch, H.J.B. Marroux, D.M. Neumark, K.J. Schafer, M.B. Gaarde, S.R. Leone, Nonlinear XUV signal generation probed by transient grating spectroscopy with attosecond pulses. Nat. Commun. 10, 1384 (2019)

    Article  ADS  Google Scholar 

  104. L. Van Dao, K.A. Tran, P. Hannaford, Cascaded four-wave mixing in the XUV region. Opt. Lett. 43, 134 (2018)

    Article  ADS  Google Scholar 

  105. K.B. Dinh, K.A. Tran, P. Hannaford, L.V. Dao, Four-wave mixing of extreme ultraviolet pulses and infrared pulses for studies of atomic dynamics. J. Opt. Soc. Am. B 36, 3046 (2019)

    Article  ADS  Google Scholar 

  106. L. Drescher, O. Kornilov, T. Witting, V. Shokeen, M.J.J. Vrakking, B. Schütte, Extreme-ultraviolet spectral compression by four-wave mixing. Nat. Photon. 15, 263 (2021)

    Article  ADS  Google Scholar 

  107. J.R. Rouxel et al., Hard X-ray transient grating spectroscopy on bismuth germanate. Nat. Photon. 15, 7 (2021)

    Google Scholar 

  108. C.P. Schwartz et al., Angstrom-resolved interfacial structure in buried organic-inorganic junctions. Phys. Rev. Lett. 127, 096801 (2021)

    Article  ADS  Google Scholar 

  109. E. Berger et al., Extreme ultraviolet second harmonic generation spectroscopy in a polar metal. Nano Lett. 21, 6095 (2021)

    Article  ADS  Google Scholar 

  110. C.B. Uzundal et al., Polarization-resolved extreme-ultraviolet second-harmonic generation from LiNbO3. Phys. Rev. Lett. 127, 237402 (2021)

    Article  ADS  Google Scholar 

  111. J. Lu, A.A. Sayem, Z. Gong, J.B. Surya, C.-L. Zou, H.X. Tang, Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539 (2021)

    Article  ADS  Google Scholar 

  112. M. Sliwa, K. Nakatani, T. Asahi, P.G. Lacroix, R.B. Pansu, H. Masuhara, Polarization and wavelength dependent nonlinear optical properties of a photo-switchable organic crystal. Chem. Phys. Lett. 437, 212 (2007)

    Article  ADS  Google Scholar 

  113. C. Woodahl et al., Dynamics of interfacial lithium ions revealed by second harmonic extreme ultraviolet spectroscopy. Nature (2022). Under review

    Google Scholar 

  114. T. Helk et al., Table-top extreme ultraviolet second harmonic generation. Sci. Adv. 7, eabe2265 (n.d.)

    Google Scholar 

  115. C.D. Pemmaraju, Valence and core excitons in solids from velocity-gauge real-time TDDFT with range-separated hybrid functionals: an LCAO approach. Comput. Condens. Matter 18, e00348 (2019)

    Article  Google Scholar 

  116. C.D. Pemmaraju, Simulation of attosecond transient soft X-ray absorption in solids using generalized Kohn–Sham real-time time-dependent density functional theory. New J. Phys. 22, 083063 (2020)

    Article  ADS  Google Scholar 

  117. M. Noda et al., SALMON: scalable ab-initio light-matter simulator for optics and nanoscience. Comput. Phys. Commun. 235, 356 (2019)

    Article  ADS  Google Scholar 

  118. H. Akai, Electronic structure Ni–Pd alloys calculated by the self-consistent KKR-CPA method. J. Phys. Soc. Jpn. 51, 468 (1982)

    Article  ADS  Google Scholar 

  119. H. Akai, Fast Korringa–Kohn–Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J. Phys. Condens. Matter 1, 8045 (1989)

    Google Scholar 

  120. S. Sharma, C. Ambrosch-Draxl, Second-harmonic optical response from first principles. Phys. Scr. 2004, 128 (2004)

    Article  Google Scholar 

  121. K.E. Dorfman, F. Schlawin, S. Mukamel, Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  122. J.D. Biggs, Y. Zhang, D. Healion, S. Mukamel, Watching energy transfer in metalloporphyrin heterodimers using stimulated X-ray Raman spectroscopy. Proc. Natl. Acad. Sci. 110, 15597 (2013)

    Article  ADS  Google Scholar 

  123. S.M. Cavaletto, D. Keefer, S. Mukamel, High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021)

    Google Scholar 

  124. A. Karamatskou, R.E. Goetz, C.P. Koch, R. Santra, Suppression of hole decoherence in ultrafast photoionization. Phys. Rev. A 101, 043405 (2020)

    Article  ADS  Google Scholar 

  125. J.M. Schäfer, L. Inhester, S.-K. Son, R.F. Fink, R. Santra, Electron and fluorescence spectra of a water molecule irradiated by an X-ray free-electron laser pulse. Phys. Rev. A 97, 053415 (2018)

    Article  ADS  Google Scholar 

  126. J.R. Rouxel, M. Kowalewski, S. Mukamel, Diffraction-detected sum frequency generation: novel ultrafast X-ray probe of molecular dynamics. J. Phys. Chem. Lett. 9, 3392 (2018)

    Article  Google Scholar 

  127. G. Batignani, C. Sansone, C. Ferrante, G. Fumero, S. Mukamel, T. Scopigno, Excited-state energy surfaces in molecules revealed by impulsive stimulated Raman excitation profiles. J. Phys. Chem. Lett. 12, 9239 (2021)

    Article  Google Scholar 

  128. S.M. Cavaletto, S. Mukamel, Probing delocalized current densities in selenophene by resonant X-ray sum-frequency generation. J. Chem. Theory Comput. 17, 367 (2021)

    Article  Google Scholar 

  129. Facts and Figures, https://www.xfel.eu/facility/overview/facts_amp_figures/index_eng.html

Download references

Acknowledgements

We thank Hisazumi Akai for his comment on theoretical calculation of nonlinear spectral analysis. We appreciate Tomoaki Senoo, **ngYu Su, Toshihide Sumi and Iwao Matsuda for editing and revising the chapter. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC-0023397.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig P. Schwartz or Walter S. Drisdell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwartz, C.P., Drisdell, W.S. (2023). Nonlinear Soft X-Ray Spectroscopy. In: Matsuda, I., Arafune, R. (eds) Nonlinear X-Ray Spectroscopy for Materials Science. Springer Series in Optical Sciences, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-99-6714-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6714-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6713-1

  • Online ISBN: 978-981-99-6714-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation