Smart Biomaterials in Drug Delivery Applications

  • Chapter
  • First Online:
Engineered Biomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 337 Accesses

Abstract

The controlled release of drugs is an essential aspect of drug delivery, ensuring optimal therapeutic effects while minimising side effects. Stimuli-responsive materials have emerged as a promising tool for develo** controlled-release drug delivery systems. These substances can react to alterations in the surroundings like light, pH, and temperature and can dispense drugs in a regulated manner. In this section, the focus is on recent progressions in materials that are reactive to stimuli, such as hydrogels, nanoparticles, and liposomes, and their utilisation in the transportation of drugs. The challenges of develo** stimuli-responsive drug delivery systems and potential strategies to overcome these obstacles are discussed. Overall, the development of stimuli-responsive materials has great potential in drug delivery, and further research is needed to exploit their capabilities fully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niculescu, A.G., Grumezescu, A.M.: Novel tumor-targeting nanoparticles for cancer treatment—A review. Int. J. Mol. Sci. 23, 5253 (2022)

    Article  Google Scholar 

  2. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Glob. Cancer Stat. (2020)

    Google Scholar 

  3. GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71, 209–249 (2021)

    Google Scholar 

  4. Wang, S., Chen, Y., Guo, J., Huang, Q.: Liposomes for tumor targeted therapy: a review. Int. J. Mol. Sci. 24, 2643 (2023)

    Article  Google Scholar 

  5. Banerjee, R.: Nanotechnology in drug delivery: present status and a glimpse into the future. Ther. Deliv. 9(4), 231 (2018)

    Article  MathSciNet  Google Scholar 

  6. Fleming, S., Ulijn, R.V.: Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014)

    Article  Google Scholar 

  7. Lin, G.G., Scott, J.G.: Peptide-directed self-assembly of hydrogels. Acta Biomater. 100, 130–134 (2012)

    Google Scholar 

  8. Jonker, A.M., Löwik, D.W.P.M., Van Hest, J.C.M.: Peptide- and protein-based hydrogels. Chem. Mater. 24, 759–773 (2012)

    Article  Google Scholar 

  9. Luk, B.T., Zhang, L.: Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mat. Interf. 6, 21859–21873 (2014)

    Article  Google Scholar 

  10. Zhang, L., Zhu, D., Dong, X., Sun, H., Song, C., Wang, C., Kong, D.: Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomed. 10, 2101–2114 (2015)

    Google Scholar 

  11. Ahmad, Z., Shah, A., Siddiq, M., Kraatz, H.-B.: Polymeric micelles as drug delivery vehicles. RSC Adv. 4, 17028–17038 (2014)

    Google Scholar 

  12. Lin, Y.-K., Yu, Y.-C., Wang, S.-W., Lee, R.-S.: Temperature, ultrasound and redox triple-responsive poly(N-isopropylacrylamide) block copolymer: synthesis, characterization and controlled release. RSC Adv. 7(43), 212–226 (2017)

    Google Scholar 

  13. Huang, X., Liao, W., Zhang, G., Kang, S., Zhang, C.Y.: PH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int. J. Nanomed. 12, 2215–2226 (2017)

    Article  Google Scholar 

  14. Zhang, C.Y., Wu, W.S., Yao, N., Zhao, B., Zhang, L.J.: PH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv. 4(40), 232–240 (2014)

    Google Scholar 

  15. Dharadhar, S., Majumdar, A., Dhoble, S., Patravale, V.: Microneedles for transdermal drug delivery: a systematic review. Drug Dev. Ind. Pharm. 45, 188–201 (2019)

    Article  Google Scholar 

  16. Prausnitz, M.R.: Engineering microneedle patches for vaccination and drug delivery to skin. Annu. Rev. Chem. Biomol. Eng. 8, 177–200 (2017)

    Article  Google Scholar 

  17. Ye, Y., Yu, J., Wen, D., Kahkoska, A.R., Gu, Z.: Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 127, 106–118 (2018)

    Article  Google Scholar 

  18. Kim, J.Y., Han, M.R., Kim, Y.H., Shin, S.W., Nam, S.Y., Park, J.H.: Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm. 105, 148–155 (2016)

    Article  Google Scholar 

  19. Ma, G., Wu, C.: Microneedle, bio-microneedle and bio-inspired microneedle: a review. J. Control Release 251, 11–23 (2017); Prausnitz, M., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)

    Google Scholar 

  20. Yao, J., Feng, J., Chen, J.: External-stimuli responsive systems for cancer theranostic. Asian J. Pharm. Sci. 11(5), 585–595 (2016)

    Article  Google Scholar 

  21. Yang, G., Liu, J., Wu, Y., Feng, L., Liu, Z.: Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord. Chem. Rev. 320–321, 100–117 (2016)

    Google Scholar 

  22. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C.: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. (2016)

    Google Scholar 

  23. www.ncbi.nlm.nih.gov

  24. Li, L., Yang, W.-W., Xu, D.-G.: Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. (2019)

    Google Scholar 

  25. Gutiérrez, L., Stepien, G., Gutiérrez, L., Pérez-Hernández, M., Pardo, J., Pardo, J., Grazú, V., de la Fuente, J.M.: Nanotechnology in Drug Discovery and Development. Elsevier (2017)

    Google Scholar 

  26. Pilch, J., Potęga, A., Kowalczyk, A., Kasprzak, A., Kowalik, P., Bujak, P., Paluszkiewicz, E., Augustin, E., Nowicka, A.M.: PH-responsive drug delivery nanoplatforms as smart carriers of unsymmetrical bisacridines for targeted cancer therapy. Pharmaceutics 15(1), 201 (2023)

    Article  Google Scholar 

  27. Altinbasak, I., Kocak, S., Colby, A.H., Alp, Y., Sanyal, R., Grinstaff, M.W., Sanyal, A.: Biomater. Sci. 11, 813–821 (2023)

    Article  Google Scholar 

  28. Gao, J., Si, F., Wang, F., Li, Y., Wang, G., Zhao, J., Ma, Y., Yu, R., Li, Y., **, C., Li, D.: Hollow mesoporous structured MnFe2O4 nanospheres: a biocompatible drug delivery system with pH-responsive release for potential application in cancer treatment. Solid State Sci. 135, 107066 (2023)

    Google Scholar 

  29. Son, M.J., Kim, T., Lee, S.-W.: Facile synthesis of fluorescent mesoporous nanocarriers with pH-sensitive controlled release of naturally derived dieckol. In: Colloids and Surfaces A: physicochemical and Engineering Aspects, Part A, vol. 657, p. 130535 (2023)

    Google Scholar 

  30. Anggraini, S.A., Prasetija, K.A., Yuliana, M., Wijaya, C.J., Bundjaja, V., Angkawijaya, A.E., Jiang, Y.-F., Putro, J.N., Hartono, S.B., Ayucitra, A., Santoso, S.P., Ismadji, S., Soetaredjo, F.E.: PH-responsive hollow core zeolitic-imidazolate framework-8 as an effective drug carrier of 5-fluorouracil. Mater. Today Chem. 27, 101277 (2023)

    Article  Google Scholar 

  31. Ghazimoradi, M., Tarlani, A., Alemi, A., Hamishehkar, H., Ghorbani, M.: “pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX & DOX) for breast cancer treatment. J. Alloy. Compd. 936, 168257 (2023)

    Article  Google Scholar 

  32. Zhang, G., Han, W., Zhao, P., Wang, Z., Li, M., Sui, X., Liu, Y., Tian, B., He, Z., Fu, Q.: Nanoscale 15, 1937–1946 (2023)

    Google Scholar 

  33. Akkaya, B., Akkaya, R.: Sümeyye Idil Celikkaya, Nurgül Sarıaydin, Kayode Yomi Raheem, Doxorubucin loaded pH-responsive chitosan-poly(acrylamide-maleic acid) composite hydrogel for anticancer targeting. J. Mol. Struct. 1274(1), 134536 (2023)

    Article  Google Scholar 

  34. Truong-Thi, N.-H., Nguyen, N.H., Nguyen, D.T.D., Tang, T.N., Nguyen, T.H., Nguyen, D.H.: pH-responsive delivery of Platinum-based drugs through the surface modification of heparin on mesoporous silica nanoparticles. Euro. Polym. J. 185, 111818 (2023)

    Google Scholar 

  35. Sheykhisarem, R., Dehghani, H.: In vitro biocompatibility evaluations of pH-sensitive Bi2MoO6/NH2-GO conjugated polyethylene glycol for release of daunorubicin in cancer therapy. Colloids Surf. B 221, 113006 (2023)

    Article  Google Scholar 

  36. Gou, K., **n, W., Lv, J., Ma, Z., Yang, J., Zhao, L., Cheng, Y., Chen, X., Zeng, R., Li, H.: A pH-responsive chiral mesoporous silica nanoparticles for delivery of doxorubicin in tumour-targeted therapy. Colloids Surf. B 221, 113027 (2023)

    Article  Google Scholar 

  37. Zhang, C., Yuan, Q., Zhang, Z., Tang, Y.: A pH-responsive drug delivery system based on conjugated polymer for effective synergistic chemo-/photodynamic therapy. Molecules 28(1), 399 (2023)

    Article  Google Scholar 

  38. Rao, K.-M., Rao, K.S.V.K., Palem, R.-R., Uthappa, U.-T., Ha, C.-S., Han, S.-S.: PH sensitive drug delivery behavior of palmyra palm kernel hydrogel of chemotherapeutic agent. Gels 9(1), 38 (2023)

    Article  Google Scholar 

  39. Heragh, B.K., Taherinezhad, H., Mahdavinia, G.R., Javanshir, S., Labib, P., Ghasemsolb, S.: pH-responsive co-delivery of doxorubicin and saffron via cross-linked chitosan/laponite RD nanoparticles for enhanced-chemotherapy. Mater. Today Commun. 34, 104956 (2023)

    Google Scholar 

  40. Teixeira, P.V., Adega, F., Martins-Lopes, P., Machado, R., Lopes, C.M., Lúcio, M.: PH-responsive hybrid nanoassemblies for cancer treatment: formulation development, optimization, and in vitro therapeutic performance. Pharmaceutics 15(2), 326 (2023)

    Article  Google Scholar 

  41. Li, B.-L., Zhang, J., **, W., Chen, X.-Y., Yang, J.-M., Chi, S.-M., Ruan, Q., Zhao, Y.: Oral administration of pH-responsive polyamine-modified cyclodextrin nanoparticles for controlled release of anti-tumour drugs. React. Funct. Polym. 172, 105175 (2022)

    Article  Google Scholar 

  42. Batool, N., Sarfraz, R.M., Mahmood, A., Rehman, U., Zaman, M., Akbar, S., Almasri, D.M., Gad, H.A.: Development and evaluation of cellulose derivative and pectin based swellable pH responsive hydrogel network for controlled delivery of cytarabine. Gels 9(1), 60 (2023)

    Article  Google Scholar 

  43. Du, M., **, J., Zhou, F., Chen, J., Jiang, W.: Dual drug-loaded hydrogels with pH-responsive and antibacterial activity for skin wound dressing. Colloids Surf. B: Biointerfaces 222, 113063 (2023)

    Google Scholar 

  44. **e, X., Lei, H., Fan, D.: Antibacterial hydrogel with pH-responsive microcarriers of slow-release VEGF for bacterial infected wounds repair. J. Mater. Sci. Technol. 144, 198–212 (2023)

    Article  Google Scholar 

  45. Pan, F., Giovannini, G., Zhang, S., Altenried, S., Zuber, F., Chen, Q., Boesel, L.F., Ren, Q.: PH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomater. 145, 172–184 (2022)

    Article  Google Scholar 

  46. Zhang, R., Ding, J., Lu, X., Yao, A., Wang, D.: pH-responsive drug release and antibacterial activity of chitosan-coated core/shell borate glass-hydroxyapatite microspheres. Ceramics Int. 49(3), 5161–5168 (2023)

    Google Scholar 

  47. Patil, R.S., Narayanan, A., Tantisuwanno, C., Sancaktar, E.: Immobilization of glucose oxidase on pH-responsive polyimide-polyacrylic acid smart membranes fabricated using 248 nm KrF excimer laser for drug delivery, 13(1), 11 (2023)

    Google Scholar 

  48. Reddy, S.G., Kumar, B.S., Prashanthi, K., Murthy, H.A.: Fabricating transdermal film formulations of montelukast sodium with improved chemical stability and extended drug release. Heliyon 9(3), e14469 (2023)

    Google Scholar 

  49. Cheng, M., Cui, Y., Guo, Y., Zhao, P., Wang, J., Zhang, R., Wang, X.: Design of carboxymethyl chitosan-reinforced pH-responsive hydrogels for on-demand release of carvacrol and simulation of release kinetics. Food Chem. 405(Part A), 134856 (2023)

    Google Scholar 

  50. Wang, Y., Peng, Z., Yang, Y., Li, Z., Wen, Y., Liu, M., Li, S., Su, L., Zhou, Z., Zhu, Y., Zhou, N.: Auricularia auricula biochar supported γ-FeOOH nanoarrays for electrostatic self-assembly and pH-responsive controlled release of herbicide and fertilizer. Chem. Eng. J. 437(Part 1), 134984 (2022)

    Google Scholar 

  51. Banihashemian, A.R., Kowsari-Esfahan, S., Ebrahimzadeh, M., Jafari, M., Akbari, A., Karimi-Maleh, H.: PH-responsive drug delivery using graphene-based materials. Nanoscale 13(3), 1801–1823 (2021). https://doi.org/10.1039/D0NR06675J

    Article  Google Scholar 

  52. Lei, X., Zhou, Y., Liu, X., Kong, L., Liao, L., Li, Y., Liu, M., Tian, L., Rao, W., Lv, G.: Effective pH-responsive nanocarrier based on the anisotropic surfaces of halloysite nanotubes for controlled drug release. Appl. Clay Sci. 232, 106799 (2023). ISSN:0169-1317

    Google Scholar 

  53. Jalali, E.S., Shojaosadati, S.A., Hamedi, S.: Green synthesis of bovine serum albumin/oxidized gum Arabic nanocomposite as pH-responsive carrier for controlled release of piperine and the molecular docking study. Int. J. Biol. Macromol. 225, 51–62 (2023). ISSN:0141-8130

    Google Scholar 

  54. de Jesus Oliveira, A.C., Silva, E.B., de Oliveira, T.C., Ribeiro, F.D.O.S., Nadvorny, D., de Freitas Oliveira, J.W., Borrego-Sánchez, A., da Franca Rodrigues, K.A., Silva, M.S., Rolim-Neto, P.J., Viseras, C.: pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy. Int. J. Bio. Mol. 230, 123272 (2023)

    Google Scholar 

  55. Lee, T.-Y., Lu, H.-H., Cheng, H.-T., Huang, H.-C., Tsai, Y.-J., Chang, I.-H., Tu, C.-P., Chung, C.-W., Lu, T.-T., Peng, C.-H., Chen, Y.: Delivery of nitric oxide with a pH-responsive nanocarrier for the treatment of renal fibrosis. J. Controll. Release 354, 417–428 (2023)

    Google Scholar 

  56. Giridhar Reddy, S.: Controlled release studies of Hydroxychloroquine sulphate (HCQ) drug-using Biodegradable polymeric Sodium alginate and Lignosulphonic acid Blends. Rasayan J. Chem. 4, 2209–2215 (2021)

    Google Scholar 

  57. Giridhar Reddy, S.: Effect of crosslinking on control drug release of hydroxychloroquine sulphate drug-using alginate beads. Iran. J. Mater. Sci. Eng. 19(2) (2022)

    Google Scholar 

  58. Hemmatpour, H., Haddadi-Asl, V., Burgers, T.C., Yan, F., Stuart, M.C., Reker-Smit, C., Vlijm, R., Salvati, A., Rudolf, P.: Nanoscale 15, 2402–2416 (2023)

    Google Scholar 

  59. Lin, Z., Ding, J., Chen, X., He, C.: pH- and temperature-responsive hydrogels based on tertiary amine-modified polypeptides for stimuli-responsive drug delivery (2023)

    Google Scholar 

  60. Pourbadiei, B., Adlsadabad, S.Y., Rahbariasr, N., Pourjavadi, A.: Synthesis and characterization of dual light/temperature-responsive supramolecular injectable hydrogel based on host-guest interaction between azobenzene and starch-grafted β-cyclodextrin: Melanoma therapy with paclitaxel. Carbohydr. Polym. 120667 (2023)

    Google Scholar 

  61. Mustafa, R.A., Ran, M., Wang, Y., Yan, J., Zhang, Y., Rosenholm, J.M., Zhang, H.: A pH/temperature responsive nanocomposite for chemo-photothermal synergistic cancer therapy. Smart Mater. Med. 4, 199–211 (2023)

    Google Scholar 

  62. Hu, X.-E., Shi, Y.-R., Zhu, X., Tian, K.-W., Xu, X.-L.: Temperature-responsive hydrogel for tumor embolization therapy. J. Drug Deliv. Sci. Technol. 80, 104107 (2023)

    Google Scholar 

  63. Ruan, L., Chen, J., Du, C., Lu, H., Zhang, J., Cai, X., Dou, R., Lin, W., Chai, Z., Nie, G., Hu, Y. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact. Mater. 13, 191–199 (2022)

    Google Scholar 

  64. Xu, L., Wang, H., Chu, Z., Cai, L., Shi, H., Zhu, C., Pan, D., Pan, J., Fei, X., Lei, Y.: Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Appl. Polym. Mater. 2(2), 741–750 (2020)

    Google Scholar 

  65. Thirupathi, K., Phan, T.T.V., Santhamoorthy, M., Ramkumar, V., Kim, S.-C.: PH and thermoresponsive PNIPAm-co-polyacrylamide hydrogel for dual stimuli-responsive controlled drug delivery. Polymers 15(1), 167 (2023)

    Article  Google Scholar 

  66. Balan, K.E., Boztepe, C., Künkül, A.: Modeling the effect of physical crosslinking degree of pH and temperature responsive poly(NIPAAm-co-VSA)/alginate IPN hydrogels on drug release behavior. J. Drug Deliv. Sci. Technol. 75, 103671 (2022)

    Google Scholar 

  67. Boztepe, C., Künkül, A., Yüceer, M.: Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. J. Drug Deliv. Sci. Technol. 57, 101603 (2020)

    Article  Google Scholar 

  68. Sakai, S., Hirano, Y., Kobayashi, Y., Arai, N.: Effect of temperature on the structure and drug-release behaviour of inclusion complex of β-cyclodextrin with cyclophosphamide: a molecular dynamics study. Soft Matter. (2023)

    Google Scholar 

  69. Thirupathi, K., Santhamoorthy, M., Radhakrishnan, S., Ulagesan, S., Nam, T.-J., Phan, T.T.V., Kim, S.-C.: Thermosensitive polymer-modified mesoporous silica for pH and temperature-responsive drug delivery. Pharmaceutics 15(3), 795 (2023)

    Article  Google Scholar 

  70. Yu, S., **ng, J.: Preparation of temperature-responsive PMMA-based microspheres encapsulating erythromycin in situ by emulsion photopolymerization. J. Drug Deliv. Sci. Technol. 81, 104256 (2023)

    Google Scholar 

  71. Işıklan, N., Erol, Ü.H.: Design and evaluation of temperature-responsive chitosan/hydroxypropyl cellulose blend nanospheres for sustainable flurbiprofen release. Int. J. Biol. Macromol. 159, 751–762 (2020)

    Google Scholar 

  72. Huang, Z., **ao, X., Jiang, X., Yang, S., Niu, C., Yang, Y., Yang, L., Li, C., Feng, L.: Preparation and evaluation of a temperature-responsive methylcellulose/polyvinyl alcohol hydrogel for stem cell encapsulation. Polym. Test. 119, 107936 (2023)

    Google Scholar 

  73. Emam, H.E., Shaheen, T.I.: Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr. Polym. 278, 118925 (2022)

    Google Scholar 

  74. Zhu, Y., Zhang, M., Wei, S., Wang, B., He, J., Qiu, X.: Temperature-responsive P(NIPAM-co-NHMA)-grafted organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. J. Drug Deliv. Sci. Technol. 70, 103197 (2022)

    Article  Google Scholar 

  75. Ow, V., Loh, X.J.: Recent developments of temperature-responsive polymers for ophthalmic applications. J. Polym. Sci. (2022)

    Google Scholar 

  76. Hemmatpour, H., Haddadi-Asl, V., Burgers, T.Q., Yan, F., Stuart, M.C.A., Reker-Smit, C., Vlijm, R., Salvati, A., Rudolf, P.: Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. Nanoscale 15, 2402–2416 (2023)

    Google Scholar 

  77. Choi, Y., Kim, J., Yu, S., Hong, S.: pH- and temperature-responsive radially porous silica nanoparticles with high-capacity drug loading for controlled drug delivery. Nanotechnology 31, 335103 (2020)

    Google Scholar 

  78. Kotsuchibashi, Y.: Recent advances in multi-temperature-responsive polymeric materials. Polym. J. 52, 681–689 (2020)

    Article  Google Scholar 

  79. Liu, Z., Zhang, S., He, B.: Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose 27, 9493–9504

    Google Scholar 

  80. Hajebi, S., Abdollahi, A., Roghani-Mamaqani, H., Salami-Kalajahi, M.: Temperature-responsive poly(N-Isopropylacrylamide) Nanogels: the role of hollow cavities and different shell cross-linking densities on doxorubicin loading and release. Langmuir 36(10), 2683–2694 (2020)

    Article  Google Scholar 

  81. Zhao, H., Li, Y.: A novel pH/temperature-responsive hydrogel based on tremella polysaccharide and poly(N-isopropylacrylamide). Colloids Surf. A 586, 124270 (2020)

    Article  Google Scholar 

  82. Liu, Q., Cheng, H.-B., Ma, R., Yu, M., Huang, Y., Li, L., Zhao, J.: A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging. Nano Today 48, 101747 (2023)

    Google Scholar 

  83. Brion, A., Chaud, J., Léonard, J., Bolze, F., Chassaing, S., Frisch, B., Heurtault, B., Kichler, A., Specht, A.: Red light-responsive upconverting nanoparticles for quantitative and controlled release of a coumarin-based prodrug. Adv. Healthc. Mater. 12, 2201474 (2023)

    Article  Google Scholar 

  84. Liu, Z., Chen, H., Huang, C., Huang, Q.: A light-responsive injectable hydrogel with remodeling tumor microenvironment for light-activated chemodynamic therapy. Macromol. Biosci. 23, 2200329 (2023)

    Article  Google Scholar 

  85. Zhou, T., **e, S., Zhou, C., Chen, Y., Li, H., Liu, P., Jiang, R., Hang, L., Jiang, G.: All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy. ACS Appl. Bio Mater. 5(8), 3841–3849 (2022)

    Article  Google Scholar 

  86. Park, J.H., Sung, K.E., Kim, K.H., Kim, J.R., Kim, J., Moon, G.D., Hyun, D.C.: Dual gate-kee** and reversible on-off switching drug release for anti-cancer therapy with pH- and NIR light-responsive mesoporous silica-coated gold nanorods. J. Ind. Eng. Chem. 106, 233–242 (2002)

    Google Scholar 

  87. Ray, S., Banerjee, S., Singh, A.K., Ojha, M., Mondal, A., Singh, N.D.P.: Visible light-responsive delivery of two anticancer drugs using single-component fluorescent organic nanoparticles. ACS Appl. Nano Mater. 5(5), 7512–7520 (2022)

    Google Scholar 

  88. Zafar, M., Ijaz, M., Iqbal, T.: Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap. 75, 2277–2293 (2021)

    Article  Google Scholar 

  89. Fan, R., Chen, C., Hou, H., Chuan, D., Mu, M., Liu, Z., Liang, R., Guo, G., Xu, J.: Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv. Funct. Mater. 31, 2009733 (2021)

    Article  Google Scholar 

  90. Rafiee, Z., Bodaghi, A., Omidi, S.: Fabrication of a photo- and pH-sensitive micelle by self-assembly of azobenzene polyglycerol for anticancer drug delivery. Monatsh. Chem. 154, 259–265 (2023)

    Article  Google Scholar 

  91. Patil, T.V., Dutta, S.D., Patel, D.K., Ganguly, K., Lim, K.-T.: Electrospinning near infra-red light-responsive unzipped CNT/PDA nanofibrous membrane for enhanced antibacterial effect and rapid drug release. Appl. Surf. Sci. 612, 155949 (2023)

    Google Scholar 

  92. Luo, J., Ma, Z., Yang, F., Wu, T., Wen, S., Zhang, J., Huang, L., Deng, S., Tan, S.: Fabrication of laponite-reinforced dextran-based hydrogels for NIR-responsive controlled drug release. ACS Biomater. Sci. Eng. 8(4), 1554–1565 (2022)

    Google Scholar 

  93. Hu, D., Zhang, C., Sun, C., et al.: Carvacrol combined with NIR light-responsive nano-drug delivery system with specific anti-bacteria, anti-inflammation, and immunomodulation for periodontitis. Nano Res. (2023)

    Google Scholar 

  94. Zhu, W., Zhao, Y., Wu, Z., Lv, F., Zhang, Y., Guo, S.: Application of UV responsive SiO2/PVP composite hydrogels as intelligent controlled drug release patches. Polymer 264, 125535 (2023)

    Google Scholar 

  95. Huang, X., Xu, L., Yu, X., Li, Y., Huang, Z., Xu, R., Zeng, W., Zhang, Z., Li, W., Deng, F.: Near-infrared light-responsive multifunctional hydrogel releasing peptide-functionalized gold nanorods sequentially for diabetic wound healing. J. Colloid Interface Sci. 639 (2023)

    Google Scholar 

  96. Xue, D., Wang, Y., Zhang, H.: Advances of NIR light responsive materials for diagnosis and treatment of brain diseases. Adv. Opt. Mater. 2202888 (2023)

    Google Scholar 

  97. **ng, Y., Zeng, B., Yang, W.: Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol. 16(10), 1075670 (2022)

    Article  Google Scholar 

  98. Abdelmohsen, H.A.M., Copeland, N.A., Hardy, J.G.: Light-responsive biomaterials for ocular drug delivery. Drug Deliv. Transl. Res. (2022)

    Google Scholar 

  99. Shan, P., Lu, Y., Lu, W., Yin, X., Liu, H., Li, D., Lian, X., Wang, W., Li, Z., Li, Z.: Biodegradable and light-responsive polymeric nanoparticles for environmentally safe herbicide delivery. ACS Appl. Mater. Interfaces 14(38), 43759–43770 (2022)

    Google Scholar 

  100. Liu, J., Kang, W., Wang, W.: Photocleavage-based photoresponsive drug delivery. Photochem. Photobiol. 98, 288–302 (2022)

    Article  Google Scholar 

  101. Khalifa, A.Z., Zyad, H., Mohammed, H., Ihsan, K., Alrawi, L., Abdullah, M., Akram, O.: Recent advances in remotely controlled pulsatile drug delivery systems. J. Adv. Pharm. Technol. Res. 13(2), 77–82 (2022)

    Google Scholar 

  102. Tang, Y., Wang, G.: NIR light-responsive nanocarriers for controlled release. J. Photochem. Photobiol. C: Photochem. Rev. 47, 100420 (2021)

    Google Scholar 

  103. Giménez, V.M.M., Arya, G., Zucchi, I.A., Galante, M.J., Manucha, W.: Soft Matter. (38), 2021 (2021)

    Google Scholar 

  104. Huang, R., Lan, R., Shen, C., Zhang, Z., Wang, Z., Bao, J., Wang, Z., Zhang, L., Hu, W., Yu, Z., Zhu, S.: Remotely controlling drug release by light-responsive cholesteric liquid crystal microcapsules triggered by molecular motors. ACS Appl. Mater. Interfaces 13(49), 59221–59230 (2021)

    Google Scholar 

  105. Yang, L., Guo, C., Jia, L., **e, K., Shou, Q., Liu, H.: Fabrication of biocompatible temperature- and pH-responsive magnetic nanoparticles and their reversible agglomeration in aqueous Milieu. Ind. Eng. Chem. Res. (2010)

    Google Scholar 

  106. Rakshit, S., Sivasankar, S.: Cross-linking of a charged polysaccharide using polyions as electrostatic staples. Soft Matter. (2011)

    Google Scholar 

  107. Heunis, C.M., Wang, Z., de Vente, G., Misra, S., Venkiteswaran, V.K.: A magnetic bio-inspired soft carrier as a temperature-controlled gastrointestinal drug delivery system. Macromol. Biosci. 2200559 (2023)

    Google Scholar 

  108. Zhu, J., Wang, J., Li, Y.: Recent advances in magnetic nanocarriers for tumor treatment. Biomed. Pharmacother. 159, 114227 (2023)

    Google Scholar 

  109. Dagdelen, S., Mackiewicz, M., Osial, M., et al.: Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release. J. Mater. Sci. 58, 4094–4114 (2023)

    Article  Google Scholar 

  110. Durkut, S.: Fe3O4 magnetic nanoparticles-loaded thermoresponsive poly(N-vinylcaprolactam)-g-galactosylated chitosan microparticles: investigation of physicochemical, morphological and magnetic properties. J. Macromol. Sci. Part A, 181–191 (2023)

    Google Scholar 

  111. Gonçalves, A., Simões, B.T., Almeida, F.V., Fernandes, S.N., Valente, M., Vieira, T., Henriques, C., Borges, J.P., Soares, P.I.P.: Engineering dual-stimuli responsive poly(vinyl alcohol) nanofibrous membranes for cancer treatment by magnetic hyperthermia. Biomater. Adv. 145, 213275 (2023)

    Google Scholar 

  112. Wang, X., Qi, Y., Hu, Z., et al.: Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Adv. Compos. Hybrid Mater. 5, 1786–1798 (2022)

    Article  Google Scholar 

  113. Mazidi, Z., Javanmardi, S., Naghib, S.M., Mohammadpour, Z.: Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: an overview on the emerging materials. Chem. Eng. J. 433(Part 1), 134569 (2022)

    Google Scholar 

  114. Demin, A.M., Vakhrushev, A.V., Pershina, A.G., Valova, M.S., Efimova, L.V., Syomchina, A.A., Uimin, M.A., Minin, A.S., Levit, G.L., Krasnov, V.P., Charushin, V.N.: Magnetic-responsive doxorubicin-containing materials based on Fe3O4 nanoparticles with a SiO2/PEG shell and study of their effects on cancer cell lines. Int. J. Mol. Sci. 23(16), 9093 (2022)

    Article  Google Scholar 

  115. Chen, Z., Song, S., Ma, J., Da Ling, S., Wang, Y.D., Kong, T.T., Xu, J.H.: Fabrication of magnetic core/shell hydrogels via microfluidics for controlled drug delivery. Chem. Eng. Sci. 248(Part B), 117216 (2022)

    Google Scholar 

  116. Dong, D., Chen, R., Jia, J., Zhao, C., Chen, Z., Lu, Q., Sun, Y., Huang, W., Wang, C., Li, Y., He, H.: Tailoring and application of a multi-responsive cellulose nanofibre-based 3D nanonetwork wound dressing. Carbohydr. Polym. 305, 120542 (2023)

    Google Scholar 

  117. Li, H., Li, B., Lv, D., Li, W., Lu, Y., Luo, G.: Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv. Drug Deliv. Rev. 114778 (2023)

    Google Scholar 

  118. Yang, X., Zhang, C.Q., Deng, D.W., Gu, Y.Q., Wang, H., Zhong, Q.F.: Multiple stimuli-responsive MXene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing. Small 18, 2104368 (2022)

    Article  Google Scholar 

  119. Zeyni, V., Karimi, S., Namazi, H.: Surface PEGylation of ZIF-8 metal-organic framework based on magnetic hydroxyapatite as a pH/magnetic targeting responsive system for anticancer drug delivery. Microporous Mesoporous Mater. 354, 112544 (2023)

    Google Scholar 

  120. Cai, W., Zhang, W., Chen, Z.: Magnetic Fe3O4@ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf. B 223, 113170 (2023)

    Article  Google Scholar 

  121. Shrivastava, P., Vishwakarma, N., Gautam, L., Vyas, S.P.: Chapter 5—Magnetically responsive polymeric gels and elastomeric system(s) for drug delivery. In: Smart Polymeric Nano-Constructs in Drug Delivery, pp. 129–150. Academic Press (2023)

    Google Scholar 

  122. Nguyen, T.P.T., Ménager, C., Rieger, J., Coumes, F.: Rational design of stimuli-responsive magnetic polymer hybrid (nano)materials. Polym. Int. (2023)

    Google Scholar 

  123. Mohanan, S., Guan, X., Liang, M., Karakoti, A., Vinu, A.: Stimuli-responsive Silica Silanol conjugates: strategic nanoarchitectonics in targeted drug delivery. Small 2301113 (2023)

    Google Scholar 

  124. Fragal, E.H., Fragal, V.H., Silva, E.P., Paulino, A.T., da Silva Filho, E.C., Mauricio, M.R., Silva, R., Rubira, A.F., Muniz, E.C.: Magnetic-responsive polysaccharide hydrogels as smart biomaterials: synthesis, properties, and biomedical applications. Carbohydr. Polym. 292, 119665 (2022)

    Google Scholar 

  125. Armenia, I., Ayllón, C.C., Herrero, B.T., Bussolari, F., Alfranca, G., Grazú, V., de la Fuente, J.M.: Photonic and magnetic materials for on-demand local drug delivery. Adv. Drug Deliv. Rev. 191, 114584 (2022)

    Google Scholar 

  126. Boztepe, C., Daskin, M., Erdogan, A.: Synthesis of magnetic responsive poly(NIPAAm-co-VSA)/Fe3O4 IPN ferrogels and modeling their deswelling and heating behaviors under AMF by using artificial neural networks. React. Funct. Polym. 173, 105219 (2022)

    Article  Google Scholar 

  127. Shademani, A., Jackson, J.K., Thompson, C.J., Chiao, M.: Controlled and localized antibiotics delivery using magnetic-responsive beads for synergistic treatment of orthopedic infection. J. Biomed. Mater. Res. 110(5), 1036–1051 (2022)

    Article  Google Scholar 

  128. Bag, N., Bardhan, S., Roy, S., Roy, J.: D Mondal nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 11, 1994–2019 (2023)

    Article  Google Scholar 

  129. Casillas-Popova, N., Bernad-Bernad, M.J., Gracia-Mora, J.: Modeling of adsorption and release kinetics of methotrexate from thermo/magnetic responsive CoFe2O4–BaTiO3, CoFe2O4–Bi4Ti3O12 and Fe3O4–BaTiO3 core-shell magnetoelectric nanoparticles functionalized with PNIPAm. J. Drug Deliv. Sci. Technol. 68, 103121 (2022)

    Article  Google Scholar 

  130. Zeng, N., He, L., Jiang, L., Shan, S., Su, H.: Synthesis of magnetic/pH dual responsive dextran hydrogels as stimuli-sensitive drug carriers, Carbohydr. Res. 520, 108632 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Giridhar Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, S.G., Murthy, H.C.A. (2023). Smart Biomaterials in Drug Delivery Applications. In: Malviya, R., Sundram, S. (eds) Engineered Biomaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-6698-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6698-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6697-4

  • Online ISBN: 978-981-99-6698-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation