Naturally Derived Biomaterials: Advances and Opportunities

  • Chapter
  • First Online:
Engineered Biomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 269 Accesses

Abstract

Biomaterials are materials that have been formed from or created by biological organisms such as plants, animals, bacteria, fungus, and other forms of life are referred to as biologically derived materials. Biomaterials are normally designed to interface with biological systems, for the treatment, augmentation, or replacement of biological functions. Across billions of years, life has been composed of and existed within these biomaterial molecules, monomers, and polymers. For instance, biomaterials of polysaccharides are sugars or starch polymers. Cellulose is the most ubiquitous and abundant polysaccharide. Polysaccharides are found in the tissues of both trees and humans. Meanwhile, natural biomaterials are substances that are derived from natural sources such as plants, animals, or minerals, and are used in medical and healthcare applications. Examples of natural biomaterials include collagen, chitosan, silk, cellulose, hyaluronic acid, and bone minerals such as hydroxyapatite. These materials are attractive in the field of regenerative medicine and tissue engineering due to their biocompatibility and biodegradability. Additionally, some natural biomaterials can mimic the physical and chemical properties of the body's natural tissues, making them ideal for use in implants and scaffolds. Recent advances in the production of natural biomaterials include the development of more efficient and scalable manufacturing processes, which has made them more widely available and accessible for use in medical applications. In addition, advances in the understanding of the biological interactions between these materials and the body have allowed for the development of new and improved medical devices and therapies. The use of natural biomaterials also provides unique opportunities for customization and personalization in medical treatment. For example, natural biomaterials such as collagen and hyaluronic acid can be engineered to meet specific patient needs, such as tissue repair and regeneration, wound healing, and drug delivery. Overall, natural biomaterials have shown great promise in many fields. This chapter's goal is to give readers a quick introduction to naturally derived biomaterials and their advances and opportunities. For example, recent developments in the production of natural biomaterials have made them more widely available and accessible for use in medical applications, and advances in the understanding of the biological interactions between these materials and the body have allowed for the development of new and improved medical devices and therapies. In the coming years, the adoption of new advanced experimental methodologies, such as bioengineering approaches, will alter the practice of medicine in the applications using natural derived biomaterials. Tissue engineering, a multidisciplinary field of research involving the principles of materials science, engineering, biological sciences, and medical research, is a clear illustration of this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coppola, G., Gaudio, M.T., Lopresto, C.G. et al.: Earth Syst. Environ. 5, 231–251 (2021)

    Google Scholar 

  2. Sciences, Penn State College of Agricultural. What is biomaterial? Department of Agricultural Economics, Sociology and Education (2023). https://aese.psu.edu/teachag/curriculum/modules/biomaterials/what-is-a-biomaterial#:~:text=A%20material%20derived%20from%2C%20or,injury%20or%20growing%20biological%20cells

  3. Leong, K., Quek, C.H., Basu, B., Chan, B., Goodman, S.B., Le Visage, C., Liang, X.-J.: Science Direct. Biomaterials (2023). https://www.sciencedirect.com/journal/biomaterials

  4. Birajdar, M.S., Joo, H., Koh, W.G. et al.: Biomater. Res. 8, 25 (2021)

    Google Scholar 

  5. Fowler, S.: Introduction to the Chemistry of Life. Charles Molnar and Jane Gair. Concepts of Biology (2021)

    Google Scholar 

  6. Cole, L., Kramer, P.R.: Macronutrients. Human Physiology, Biochemistry and Basic Medicine, pp. 157–164. Academic Press (2016)

    Google Scholar 

  7. Biology. Lipid. Biology Online (2022). https://www.biologyonline.com/dictionary/lipid

  8. Ngwuluka, N.C.: Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery. [book auth.] Nedal Y. Abu-Thabit Abdel Salam Hamdy Makhlouf. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, pp. 531–554. Woodhead Publishing (2018)

    Google Scholar 

  9. Wang, F., Li, P., Chu, H.C., Lo, P.K.: Biosensors (Basel) 12(2), 93 (2022)

    Google Scholar 

  10. Muncie, J.M., Weaver, V.M.: Curr. Top. Dev. Biol. 130, 1–37 (2018)

    Google Scholar 

  11. Badylak, L.T., SaldinMadeline, C., CramerSachin, S., VelankarLisa, J., WhiteStephen, F.: Elsevier BV, pp. 1–46 (2017)

    Google Scholar 

  12. Chempages. Biomolecules: Carbohydrates. Polysaccharides (2023). https://www2.chem.wisc.edu/deptfiles/genchem/netorial/modules/biomolecules/modules/carbs/carb6.htm

  13. Mohammed, A.S.A., Naveed, M., Jost, N.: J. Polym. Environ. 29(8), 2359–2371 (2021)

    Google Scholar 

  14. Helmenstine, A.M.: Polysaccharide Definition and Functions. Thought Co. (2020). https://www.thoughtco.com/polysaccharide-definition-and-functions-4780155

  15. Zhang, Y.H.P.: 9—Starch: A high-density chemical hydrogen storage compound for PEM fuel cells. [book auth.] Antonio M. Chaparro Paloma Ferreira-Aparicio. Portable Hydrogen Energy Systems, pp. 161–173. Academic Press (2018)

    Google Scholar 

  16. Kadokawa, J.: Enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides. [book auth.] Katja Loos Nico Bruns. Methods in Enzymology, pp. 189–213. Academic Press (2019)

    Google Scholar 

  17. Falua, K.J., Pokharel, A., Babaei-Ghazvini, A., Ai, Y., Acharya, B.: Polymers 14(11), 2215 (2022)

    Google Scholar 

  18. Omoregie Egharevba, H.: IntechOpen (2020)

    Google Scholar 

  19. Tian, J., Deng, H., Huang, M., Liu, R., Yi, Y., Dong, X.: Electrospun Nanofibers for Food and Food Packaging Technology. [book auth.] **anfeng Wang, Jianyong Yu Bin Ding. Micro and Nano Technologies: Electrospinning: Nanofabrication and Applications, pp. 455–516. William Andrew Publishing (2019)

    Google Scholar 

  20. Ren, F., Wang, J., Yu, J., Zhong, C., **e, F., Wang, S.: ACS Omega 6(41) (2021)

    Google Scholar 

  21. Cengage. Encyclopedia.com. Organic Chemistry: Starch (2018). https://www.encyclopedia.com/science-and-technology/chemistry/organic-chemistry/starch

  22. Annie, M.: Moisture and Mosses. Mountain Moss (2023). https://www.mountainmoss.com/pages/moisture-and-mosses

  23. Bakerpedia. What is Starch? Starch (2023). https://bakerpedia.com/ingredients/starch/

  24. do Val Siqueira, L., La Fuente Arias, C.I., Maniglia, B.C., Tadini, C.C.: Current Opinion in Food Science 122–130 (2021)

    Google Scholar 

  25. Gadhave, R., Gadhave, C.: Open J. Polym. Chem. 12, 55–79 (2022)

    Google Scholar 

  26. Leverette, M.M.: How to Use Laundry Starch and Sizing? The Spruce, New York (2021)

    Google Scholar 

  27. Apeji, Y.E., Kaigama, R.T., Ibrahim, S.H., Anyebe, S.N., Abdussalam, A.O., Oyi, A.R.: Turk. J. Pharm. Sci. 19(5), 513–520 (2022)

    Google Scholar 

  28. Gamage, A., Liyanapathiranage, A., Manamperi, A., Gunathilake, C., Mani, S., Merah, O., Madhujith, T.: Sustainability 14(10), 6085 (2022)

    Google Scholar 

  29. FlexBooks. Polysaccharides. Chemistry For High School (2023). https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/26.3/primary/lesson/polysaccharides-chem/

  30. Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., Cosco, D.: Front. Pharmacol. 12, 601626 (2021)

    Google Scholar 

  31. Zhang, X., Zhou, J., Ying, H., Zhou, Y., Lai, J., Chen, J.: ACS Sustain. Chem. Eng. 8(4), 2106–2114 (2020)

    Google Scholar 

  32. Salton, M.R.J., Kim, K.S.: Structure. In: Baron, S. (Ed.) Medical Microbiology, 4th edn. Galveston (TX): [book auth.] Baron S. Medical Microbiology 4th Edition. University of Texas Medical Branch at Galveston (1996)

    Google Scholar 

  33. Kim, S.J., Chang, J., Singh, M.: Biochim. Biophys. Acta 1848(1 Pt B), 350–62 (2015)

    Google Scholar 

  34. Garde, S., Chodisetti, P.K., Reddy, M.: EcoSal Plus 9(2) (2021)

    Google Scholar 

  35. Davis, K.M., Weiser, J.N.: Infect. Immun. 79(2), 562–70 (2011)

    Google Scholar 

  36. Godoy, M.G., Amorim, G.M., Barreto, M.S., Freire, D.M.G.: Agricultural Residues as Animal Feed: Protein Enrichment and Detoxification Using Solid-State Fermentation. [book auth.] Christian Larroche, Carlos Ricardo Soccol Ashok Pandey. Current Developments in Biotechnology and Bioengineering, pp. 235–256. Elsevier (2018)

    Google Scholar 

  37. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Angewandte Chemie (International ed. in English) 44, 3358–93 (2005)

    Google Scholar 

  38. Norizan, M.N., Shazleen, S.S., Alias, A.H., Sabaruddin, F.A., Asyraf, M.R.M., Zainudin, E.S., Abdullah, N., Samsudin, M.S., Kamarudin, S.H., Norrrahim, M.N.F.: Nanomaterials (Basel) 12(19), 3483 (2022)

    Google Scholar 

  39. Deng, L., Huang, Y., Chen, S., Han, Z., Han, Z., **, M., Qu, X., Wang, B., Wang, H., Gu, S.: Carbohydr. Polym. 308, 120647 (2023)

    Google Scholar 

  40. Bierach, C., Coelho, A.A., Turrin, M. et al.: Archit. Struct. Constr. (2023)

    Google Scholar 

  41. Elieh-Ali-Komi, D., Hamblin, M.R.: Int. J. Adv. Res. (Indore) 411–427 (2016)

    Google Scholar 

  42. Arockianathan, M.: 4 - Chitin-based nanomaterials. [book auth.] Ashok Kumar, Tuan Anh Nguyen, Swati Sharma, Yassine Slimani Shamsher Kanwar. In: Micro and Nano Technologies: Biopolymeric Nanomaterials, pp. 61–99. Elsevier (2021)

    Google Scholar 

  43. Stefanowska, K., Woźniak, M., Dobrucka, R., Ratajczak, I.: Materials, vol. 16, p. 1579 (2023)

    Google Scholar 

  44. Alimi, B.A., Pathania, S., Wilson, J., Duffy, B., Frias, J.M.C.: Int. J. Biol. Macromol. 237, 124195 (2023)

    Google Scholar 

  45. Saberi Riseh, R., Hassanisaadi, M., Vatankhah, M., Babaki, S., Ait Barka, E.: Int. J. Biol. Macromol. 220 (2022)

    Google Scholar 

  46. Application of Chitosan in Agriculture. Linkedin. (2022). https://www.linkedin.com/pulse/application-chitosan-agriculture-cathy-liu

  47. Wantulla, M., Joop J.A. van Loon, Dicke, M.: Appl. Soil Ecol. 188 (2023). ISSN 0929-1393

    Google Scholar 

  48. Iber, B., Kasan, N., Torsabo, D., Omuwa, J.: J. Renew. Mater. 10, 42–49 (2021)

    Google Scholar 

  49. Parvin, N. et al.: 9, 64 (2023)

    Google Scholar 

  50. López-Valverde, N., Aragoneses, J., López-Valverde, A., Rodríguez, C., Macedo de Sousa, B., Aragoneses, J.M.: Front. Bioeng. Biotechnol. 10, 907589 (907589)

    Google Scholar 

  51. Teixeira-Santos, R., Lima, M., Gomes, L.C., Mergulhão, F.J.: iScience 24(12), 103480 (2022)

    Google Scholar 

  52. Pereira, L., Cotas, J.: Introductory Chapter: Alginates—Alginates—Recent Uses of This Natural Polymer. [A General Overview [Internet].] IntechOpen (2020). https://doi.org/10.5772/intechopen.88381

  53. Farshidfar, N., Iravani, S., Varma, R.S.: Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine 21(3), 189 (2023). Marine Drugs. https://doi.org/10.3390/md21030189

  54. Wu, T., Liu, L., Gao, Z., Cui, C., Fan, C., Liu, Y., Mingyuan Di, A., Yang, Q., Xu, Z., Liua, W.: Biomaterials Science (2023)

    Google Scholar 

  55. Best Summer Skincare Products of 2023. Outlook India (2023). https://www.outlookindia.com/business-spotlight/best-summer-skincare-products-of-2023-news-271961

  56. Szymański, T., Semba, J.A., Mieloch, A.A. et al.: Sci. Rep. 13, 646 (2023)

    Google Scholar 

  57. Kwon, H., Brown, W.E., Lee, C.A. et al.: Nat. Rev. Rheumatol. 15, 550–570 (2019)

    Google Scholar 

  58. Hussain, M.A., Haseeb, M.T., Muhammad, G., Tahir, M.N.: Inulin Type Fructan: A Versatile Functional Material for Food and Healthcare. [book auth.] M., Sheardown, H., Al-Ahmed, A. Jafar Mazumder. Functional Biopolymers. Polymers and Polymeric Composite (2019)

    Google Scholar 

  59. Parın, F.N. et al.: Polymers 15, 1002 (2023)

    Google Scholar 

  60. Paz-Gómez, G., del Caño-Ochoa, J.C., Rodríguez-Alabanda, O., Romero, P.E., Cabrerizo-Vílchez, M., Guerrero-Vaca, G., Rodríguez-Valverde, M.A.: Coatings 9, 5–29 (2019)

    Google Scholar 

  61. Martin Gericke, L.H.S., Heinze, T.: Carbohydrate Polymers 300, 120251 (2023). ISSN 0144-8617

    Google Scholar 

  62. What are proteins and what do they do? Medline Plus (2023). https://medlineplus.gov/genetics/understanding/howgeneswork/protein/#:~:text=Proteins%20are%20made%20up%20of,combined%20to%20make%20a%20protein

  63. Education, Nature. Protein Structure. Scitable (2023). https://www.nature.com/scitable/topicpage/protein-structure-14122136/#:~:text=The%20overall%20structure%20of%20the,and%20beta%20sheets%20(red).&text=The%20primary%20structure%20of%20a,protein's%20unique%20three%2Ddimensional%20shape

  64. Elastin. Cleveland Clinic (2023). https://my.clevelandclinic.org/health/body/22482-elastin

  65. Mengmeng **, I., Zhu, S., Hou, Y.: ACS Biomaterials Science and Engineering Article ASAP (2023)

    Google Scholar 

  66. What is collagen, and why do people use it? Medical News Today. [Online] Healthline Media (2022). https://www.medicalnewstoday.com/articles/262881

  67. Wu, M., Cronin, K., Crane, J.S.: Biochemistry, Collagen Synthesis. Treasure Island (FL). StatPearls Publishing (2023)

    Google Scholar 

  68. Manoukian, O.S., Sardashti, N., Stedman, T., Gailiunas, K., Ojha, A., Penalosa, A., Mancuso, C., Hobert, M., Kumbar, S.G.: Biomaterials for Tissue Engineering and Regenerative Medicine. [book auth.] Roger Narayan. Encyclopedia of Biomedical Engineering. Elsevier (2019)

    Google Scholar 

  69. Man, K., Joukhdar, H., Manz, X.D. et al.: Cell Tissue Res. 388, 565–581 (2022)

    Google Scholar 

  70. Loureiro dos Santos, L.A.: Natural Polymeric Biomaterials: Processing and Properties. Reference Module in Materials Science and Materials Engineering. Elsevier (2017)

    Google Scholar 

  71. Murphy, K.C., Whitehead, J., Zhou, D., Ho, S.S., Leach, J.K.: Acta Biomater. 64, 176–186 (2017)

    Google Scholar 

  72. Ahmed, S., Shah, P., Ahmed, O.: Biochemistry, Lipids. StatPearls Publishing, Treasure Island (FL) (2023)

    Google Scholar 

  73. Nsairat, H., Khater, D., Sayed, U., Odeh, F., Al Bawab, A., Alshaer, W.: 8(5), e09394 (2022). Heliyon

    Google Scholar 

  74. Nakhaei, P., Margiana, R., Bokov, D.O., Abdelbasset, W.K., Jadidi Kouhbanani, M.A., Varma, R.S., Marofi, F., Jarahian, M., Beheshtkhoo, N.: Front. Bioeng. Biotechnol. (2021)

    Google Scholar 

  75. Farasati Far, B., Naimi-Jamal, M.R., Sedaghat, M., Hoseini, A., Mohammadi, N., Bodaghi, M.: J. Funct. Biomater. 14(2), 115 (2023)

    Google Scholar 

  76. Musielak, E., Feliczak-Guzik, A., Nowak, I.: Materials (Basel) 15(2), 682 (2022)

    Google Scholar 

  77. Luchini, A., Vitiello, G.: Biomimetics (Basel) 6(1), 3 (2021)

    Google Scholar 

  78. Nikoleli, G.P., Nikolelis, D.P., Siontorou, C.G., Nikolelis, M.T., Karapetis, S.: Membranes (Basel) 8(4), 108 (2018)

    Google Scholar 

  79. Syed Azhar, S.N.A., Ashari, S.E., Zainuddin, N., Hassan, M.: UPM, Serdang, Selangor. Molecules 27(1), 289 (2022)

    Google Scholar 

  80. Maisonneuve, L., Lebarbé, T., Cramail, E.G.H.: Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics (2013)

    Google Scholar 

  81. Talló, K., Bosch, M., Pons, R., Cocera, M., López, O.: J. Mater. Chem. B 8(1), 61–167 (2020)

    Google Scholar 

  82. Nagtode, V.S., Cardoza, C., Yasin, H.K.A., Mali, S.N., Tambe, S.M., Roy, P., Singh, K., Goel, A., Amin, P.D., Thorat, B.R., Cruz, J.N., Pratap, A.P.: ACS Omega 8(13), 11674–99 (2023)

    Google Scholar 

  83. Hill, K., Rhode, O.: Lipid/Fett 101(1), 25–33 (1999)

    Google Scholar 

  84. Allen, D.K., Tao, B.Y.: Carbohydrate-alkyl ester derivatives as biosurfactants. J. Surfact. Deterg 2(3), 383–390 (1999)

    Google Scholar 

  85. Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  86. Aleandri, S., Rahnfeld, L., Chatzikleanthous, D., Bergadano, A., Bühr, C., Detotto, C., Fuochi, S., Weber-Wilk, K., Schürch, S., van Hoogevest, P., Luciani, P.: Eur. J. Pharmaceut. Biopharmaceut. 181, 300–309 (2022). ISSN 0939-6411

    Google Scholar 

  87. Anada, R., Hara, E.S., Nagaoka, N., Okada, M., Kamioka, H., Matsumoto, T.: J. Mater. Chem. B (2022)

    Google Scholar 

  88. Mao, Y., Guidoin, R., li, Y., Brochu, G., Zhang, Z., Wang, L.: Mater. Des. 205, 109737 (2021)

    Google Scholar 

  89. Wax. Chemistry. [Online] LibreText (2022). https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Supplemental_Modules_(Biological_Chemistry)/Lipids/Non-glyceride_Lipids/Wax#:~:text=A%20wax%20is%20a%20simple,coatings%20on%20leaves%20and%20stems

  90. Madhuranthakam, C.M.R., Fernandes, S.Q., Piozzi, A., Francolini, I.: Int. J. Mol. Sci. 23(16), 9501 (2022)

    Google Scholar 

  91. Zhang, Q.W., Lin, L.G., Ye, W.C.: Chin. Med. 13, 20 (2018)

    Google Scholar 

  92. Matinong, A.M.E., Chisti, Y., Pickering, K.L., Haverkamp, R.G.: Biology (Basel) 11(6), 905 (2022)

    Google Scholar 

  93. Ranganagowda, R.P.G., Kamath, S.S., Bennehalli, B.: Mat. Sci. Res. India 16(1) (2019)

    Google Scholar 

  94. Sepmag. Purification Techniques. Purification Techniques. [Online] (2023). https://www.sepmag.eu/blog/purification-techniques

  95. Jiang, Y.H., Lou, Y.Y., Li, T.H., Liu, B.Z., Chen, K., Zhang, D., Li, T.: Am. J. Transl. Res. 14(2), 1146–1159 (2022)

    Google Scholar 

  96. Quantifiers and Quantification. Stanford Encyclopedia of Philosophy. [Online] Stanford Education (2022). https://plato.stanford.edu/entries/quantification/#:~:text=Quantifier%20expressions%20are%20marks%20of,most%20common%20examples%20of%20quantification

  97. Lewis, M., Bromley, K., Sutton, C.J., McCray, G., Myers, H.L., Lancaster, G.A.: Pilot Feasibil. Stud. 7, 1 (2021)

    Google Scholar 

  98. Troy, E., Tilbury, M.A., Power, A.M., Wall, J.G.: Polymers (Basel) 13(19), 3321 (2021)

    Google Scholar 

  99. Carmona, P., et al.: Gels 7, 186 (2021)

    Google Scholar 

  100. Taaca, K.L.M., Prieto, E.I., Vasquez, M.R.: Polymers 14 13, 2560 (2022)

    Google Scholar 

  101. Aranaz, I., Alcántara, A.R., Civera, M.C., Arias, C., Elorza, B., Heras Caballero, A., Acosta, N.: Polymers (Basel) 13(19), 3256 (2021)

    Google Scholar 

  102. Purohit, P., Bhatt, A., Mittal, R.K., Abdellattif, M.H., Farghaly, T.A.: Front. Bioeng. Biotechnol. 10, 1044927 (2023)

    Google Scholar 

  103. Sahin Kehribar, E., Isilak, M.E., Bozkurt, E.U., Adamcik, J., Mezzenga, R., Seker, U.O.S.: Biomater. Sci. 9(10), 3650–3661 (2021)

    Google Scholar 

  104. Bose, S., Robertson, S.F., Bandyopadhyay, A.: Acta Biomater. 66, 6–22 (2018)

    Google Scholar 

  105. Jasni, A.H.: Fabrication of nanostructures by physical techniques. [book auth.] Preetha Balakrishnan Sabu Thomas. In: Micro and Nano Technologies Nanoscale Processing. Elsevier (2021)

    Google Scholar 

  106. Gopi, S., Balakrishnan, P.: Liposomal nanostructures: Properties and applications. [book auth.] Preetha Balakrishnan Sabu Thomas. In: Micro and Nano Technologies Nanoscale Processing. Elsevier (2021)

    Google Scholar 

  107. Ilangovan, R., Subha, V., Earnest Ravindran, R.S., Kirubanandan, S., Renganathan, S.: Nanomaterials: Synthesis, physicochemical characterization, and biopharmaceutical applications. [book auth.] Preetha Balakrishnan Sabu Thomas. In: Micro and Nano Technologies. Elsevier (2021)

    Google Scholar 

  108. Gerwig, G.J., Poele, E.M., Dijkhuizen, L., Kamerling, J.P.: Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality,. [book auth.] David C. Baker. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press (2016)

    Google Scholar 

  109. Giri, B. : Simultaneous Determination of Protein and Glucose in Urine Sample Using a Paper-Based Bioanalytical Device. Laboratory Methods in Microfluidics. Elsevier (2017)

    Google Scholar 

  110. Perluigi, M., Marco, F., Foppoli, C., Coccia, R., Blarzino, C., Marcante, M., Cini, C.: Biochemical and biophysical research communications 3 (2003)

    Google Scholar 

  111. Brouns, J.E.P., Dankers, P.Y.W.: Biomacromolecules 22(1), 4–23 (2021)

    Google Scholar 

  112. Cell Dissociation Methods for Disaggregation of Tissue: Mechanical vs Enzymatic vs Chemical. Akadeum Life Science. [Online] Mteric Marketing, March 2021. https://www.akadeum.com/blog/cell-dissociation/#:~:text=Enzymatic%20dissociation%20uses%20specific%20proteins,combination%20leads%20to%20optimal%20results

  113. Duarte, L., Matte, C.R., Bizarro, C.V. et al.: World J. Microbiol. Biotechnol. 36, 11 (2020)

    Google Scholar 

  114. Chandra, P., Enespa, S.R., Arora, P.K.: Microb. Cell Fact. 19(1), 169 (2020)

    Google Scholar 

  115. Bacakova, M., Pajorova, J., Sopuch, T., Bacakova, L.: Materials (Basel) 11(11), 2314 (2018)

    Google Scholar 

  116. Widiyanti, P., Priskawati, Y.C.A.: Int. J. Biomater. (2023)

    Google Scholar 

  117. Qi, P., Ning, Z., Zhang, X.: IET Nanobiotechnol. 1–8 (2022)

    Google Scholar 

  118. Kang, W., Shi, Y., Yang, Z., Yin, X., Zhao, Y., Weng, L., Teng, Z.: RSC Adv. 13, 5609–5618 (2023)

    Article  ADS  Google Scholar 

  119. Shalaby, M., Ghareeb, A.Z., Khedr, S.M., Mostafa, H.M., Saeed, H., Hamouda, D.

    Google Scholar 

  120. Rotman, S.G., Post, V., Foster, A.L., Lavigne, R., Wagemans, J., Trampuz, A., Gonzalez Moreno, M., Metsemakers, W.-J., Grijpma, D.W., Richards, R.G., Eglin, D., Moriarty, T.F.: J. Drug Deliv. Sci. Technol. 79, 103991 (2023). ISSN 1773-2247

    Google Scholar 

  121. Bennardo, F., Gallelli, L., Palleria, C., Colosimo, M., Fortunato, L., De Sarro, G., Giudice, A.: BMC Oral Health 23(1), 134 (2023)

    Google Scholar 

  122. Naznin, A., Dhar, P.K., Dutta, S.K., Chakrabarty, S., Karmakar, U.K., Kundu, P., Hossain, M.S., Barai, H.R., Haque, M.R.: Pharmaceutics 15(3), 732 (2023)

    Google Scholar 

  123. Liu, L., Wang, J., Li, Y., Liu, B., Zhang, W., An, W., Wang, Q., Xu, B., Zhao, L., Ma, C.: Regenerat. Biomater. 9, rbac054 (2022)

    Google Scholar 

  124. Almeida, D., Sartoretto, S.C., Calasans-Maia, J.D.A., Ghiraldini, B., Bezerra, F.J.B., Granjeiro, J.M., et al.: PLoS ONE 18(2), e0282067 (2023)

    Google Scholar 

  125. Salsabila, A., et al.: Metals 13, 494 (2023)

    Google Scholar 

  126. Centre, Bristol Biomedical Research. First in human study to assess knee cartilage repair implant launches at Southmead Hospital. NIHR. [Online] July 13, 2022. https://www.bristolbrc.nihr.ac.uk/news/first-in-human-study-to-assess-knee-cartilage-repair-implant-launches-at-southmead-hospital/.

  127. Romasco, T., et al.: Biomedicines 11, 786 (2023)

    Google Scholar 

  128. Biswas, A., et al.: Polymers 15, 1425 (2023)

    Google Scholar 

  129. Zhatkanbayev, Y., Zhatkanbayeva, Z., Iskakova, Z., Kolpek, A., Serikov, A., Moldagulova, N., Danlybayeva, G., Sarsenova, A.: Int. J. Biomater. Hindawi (2023)

    Google Scholar 

  130. Castim, D.: Vegan Biomaterials Could Replace Chemicals In Crop Management. Vegan Biomaterials Could Replace Chemicals in Crop Management (2022)

    Google Scholar 

  131. Carlson, C.: Modern Synthesis uses bacteria to create biomaterial fabric. Dezeen. [Online] (2023). https://www.dezeen.com/2023/04/03/modern-synthesis-bacteria-biomaterial-fabric/

  132. Finney, A.: Stella McCartney releases jumpsuit made with iridescent BioSequins. Dezeen. [Online] (2023). https://www.dezeen.com/2019/08/02/bio-iridescent-sequin-elissa-brunato-sustainable-fashion/

  133. Future proof your product and elevate your brand - with woodbased renewable Glycols. UPM Biochemicals. [Online] (2023). https://www.upmbiochemicals.com/glycols/

  134. Mueller, J.: CJ Biomaterials Develops Cosmetic Case Featuring Bio-sourced Materials for CJ Olive Young. Global Cosmetic Industry (2022). https://www.gcimagazine.com/packaging/containers/news/22618509/cj-bio-cj-biomaterials-inc-develops-cosmetic-case-featuring-biosourced-materials

  135. Kim, H.-M., Park, J.H., Choi, Y.J., Ohb, J.-M., Park, J.: RSC Adv. 8 (2023)

    Google Scholar 

  136. Bagshaw, E.: Top 23 biomaterial designers to watch in 2023. Mater. Source (2022)

    Google Scholar 

  137. Markos: Oyster shell composite. Material exploration for moulding. Instagram, Italy (2020)

    Google Scholar 

  138. Troy, E., et al.: Polymers 13 (2021)

    Google Scholar 

  139. O'Brien, F.J.: Mater. Today 14(3), 88–95I (2011). SSN 1369-7021

    Google Scholar 

  140. Yusoff, N.H.M., Chong, C.H., Wan, Y.K., Cheah, K.H., Wong, V.-L.: J. Water Process Eng. 51, 103410 (2023). ISSN 2214-7144

    Google Scholar 

  141. Mariani, E., Lisignoli, G., Borzì, R.M., Pulsatelli, L.: Int. J. Mol. Sci. 20(3), 636 (2019)

    Google Scholar 

  142. Genetic Engineering. National Human Genome Research Institute. [Online] USA (2023). https://www.genome.gov/genetics-glossary/Genetic-Engineering

  143. Joyce, S., Mazza, A.-M., Kendall, S.: Rapporteurs. Synthetic Biology: Science and Technology for the New Millennium. Positioning Synthetic Biology to Meet the Challenges of the 21st Century: Summary Report of a Six Academies Symposium Series. National Academic Press (2013)

    Google Scholar 

  144. Majumder, K.: Biomaterials. Times of India (2021)

    Google Scholar 

  145. National Academies of Sciences, Engineering, and Medicine. Evaluation of the Army Research Laboratory: Interim Report. The National Academies Press, Washington (2014)

    Google Scholar 

  146. Pereira, C.S., Thompson, J.A., Xavier, K.B.: FEMS Microbiol. Rev. 37(2), 156–81 (2013)

    Google Scholar 

  147. What Does The Future Have In Store For Photonics?. Stensborg. [Online] Stensborg (2022). https://www.stensborg.com/post/what-does-the-future-have-in-store-for-photonics#:~:text=The%20future%20of%20photonics&text=Right%20now%2C%20research%20is%20ongoing,optical%20internet%20to%20quantum%20communications

  148. Choi, S.: Batteries 9(2), 119 (2023)

    Google Scholar 

  149. Ng, S., Kurisawa, M.: Acta Biomaterialia 108–129 (2021). ISSN 1742-7061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainil Hawa Jasni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jasni, A.H., Azmi, A.S., Puad, N.I.M., Ali, F., Nor, Y.A. (2023). Naturally Derived Biomaterials: Advances and Opportunities. In: Malviya, R., Sundram, S. (eds) Engineered Biomaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-6698-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6698-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6697-4

  • Online ISBN: 978-981-99-6698-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation