• 135 Accesses

Abstract

In 1990, Handyside et al. reported a successful pregnancy utilizing preimplantation genetic diagnosis (PGD) technology for embryo sex selection in IVF for the first time [1]. Nowadays, the technology has been used in IVF centers worldwide. The term PGD has been replaced by preimplantation genetic testing (PGT) in 2017 [2]. PGT refers to a test performed to analyze the DNA from oocytes (polar bodies) or embryos (cleavage stage or blastocyst) for HLA-ty** or for determining genetic abnormalities. These include PGT for aneuploidies (PGT-A); PGT for monogenic/single gene defects (PGT-M); and PGT for chromosomal structural rearrangements (PGT-SR). With the continuous development of molecular biology techniques, some tests can be performed using non-invasive or minimally invasive methods to obtain genetic material [3, 4]. However, the accuracy of the test results based on such sampling methods is still controversial [5]. For this reason, genetic material is still predominantly retrieved by invasive means, i.e., biopsy. The biopsy consists of two micro-manipulation steps: zona pellucida (ZP) opening and cell removal. PGT biopsies are usually performed in three different ways: (a) polar body biopsy: the first and second polar bodies are biopsied at the oocyte or zygote stage; (b) cleavage stage biopsy: one or two blastomeres are taken for biopsy at the cleavage stage; and (c) blastocyst biopsy: 5 to 10 trophectoderm (TE) cells are taken for biopsy at the blastocyst stage. Biopsy of polar bodies is mainly used for diagnosing maternal genetic mutations and specific laws and regulations prohibit embryo biopsy in some regions. Before 2010, approximately 90% of PGD biopsies were performed on cleavage stage embryos [6]. However, a prospective cohort study found that the number of blastomeres biopsied at the cleavage stage would affect blastocyst formation and pregnancy outcomes [7]. Another randomized paired study also showed that biopsy of even only one blastomere of a cleavage embryo would significantly reduce its implantation potential. In contrast, biopsies of blastocysts had no measurable impact on implantation rate [8]. Therefore, following the improvement of controlled ovarian stimulation and blastocyst vitrification technology, blastomere biopsy has been gradually replaced by trophectoderm biopsy in the last decade [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handyside AH, Kontogianni EH, Hardy K, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.

    Article  PubMed  Google Scholar 

  2. Zegers-Hochschild F, Adamson GD, Dyer S, et al. The international glossary on infertility and fertility care, 2017. Fertil Steril. 2017;108(3):393–406.

    Article  PubMed  Google Scholar 

  3. Xu J, Fang R, Chen L, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci U S A. 2016;113(42):11907–12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiao J, Shi B, Sagnelli M, et al. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum Reprod. 2019;34(7):1369–79.

    Article  PubMed  Google Scholar 

  5. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16–42.

    Article  PubMed  Google Scholar 

  6. Harton GL, Magli MC, Lundin K, et al. ESHRE PGD Consortium/Embryology Special Interest Group—best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26(1):41–6.

    Article  PubMed  Google Scholar 

  7. De Vos A, Staessen C, De Rycke M, et al. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers. Hum Reprod. 2009;24(12):2988–96.

    Article  PubMed  Google Scholar 

  8. Scott RT Jr, Upham KM, Forman EJ, et al. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.

    Article  PubMed  Google Scholar 

  9. Scott KL, Hong KH, Scott RT Jr. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608–14.

    Article  PubMed  Google Scholar 

  10. Schoolcraft WB, Treff NR, Stevens JM, et al. Live birth outcome with trophectoderm biopsy, blastocyst vitrification and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients. Fertil Steril. 2011;96(3):638–40.

    Article  PubMed  Google Scholar 

  11. Gardner DK, Weissman A, Howles CM, et al. Textbook of assisted reproductive techniques. 4th ed. Boca Raton: CRC Press; 2012.

    Google Scholar 

  12. Glujovsky D, Farquhar C, Quinteiro Retamar AM, et al. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;6:CD002118.

    Google Scholar 

  13. Wei D, Liu JY, Sun Y, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393(10178):1310–8.

    Article  PubMed  Google Scholar 

  14. Vera-Rodriguez M, Rubio C. Assessing the true incidence of mosaicism in preimplantation embryos. Fertil Steril. 2017;107(5):1107–12.

    Article  PubMed  Google Scholar 

  15. Cram DS, Leigh D, Handyside A, et al. PGDIS position statement on the transfer of mosaic embryos 2019. Reprod Biomed Online. 2019;39(Suppl 1):e1–4.

    PubMed  Google Scholar 

  16. Popovic M, Dhaenens L, Boel A, et al. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34.

    Article  PubMed  Google Scholar 

  17. Gleicher N, Albertini DF, Barad DH, et al. The 2019 PGDIS position statement on transfer of mosaic embryos within a context of new information on PGT-A. Reprod Biol Endocrinol. 2020;18(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davidson LM, Liu Y, Griffiths T, et al. Laser technology in the ART laboratory: a narrative review. Reprod Biomed Online. 2019;38(5):725–39.

    Article  PubMed  Google Scholar 

  19. McArthur SJ, Leigh D, Marshall JT, et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84(6):1628–36.

    Article  PubMed  Google Scholar 

  20. Kokkali G, Traeger-Synodinos J, Vrettou C, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22(5):1443–9.

    Article  PubMed  Google Scholar 

  21. Capalbo A, Rienzi L, Cimadomo D, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81.

    Article  PubMed  Google Scholar 

  22. Zhao H, Tao W, Li M, et al. Comparison of two protocols of blastocyst biopsy submitted to preimplantation genetic testing for aneuploidies: a randomized controlled trial. Arch Gynecol Obstet. 2019;299(5):1487–93.

    Article  PubMed  Google Scholar 

  23. Capalbo A, Romanelli V, Cimadomo D, et al. Implementing PGD/PGD-A in IVF clinics: considerations for the best laboratory approach and management. J Assist Reprod Genet. 2016;33(10):1279–86.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maggiulli R, Giancani A, Cimadomo D, et al. Human blastocyst biopsy and vitrification. J Vis Exp. 2019;26(149):e59625.

    Google Scholar 

  25. Yan Z, Liang H, Deng L, et al. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS One. 2015;10(12):e0145172.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu YF, Zhou QW, Zhang SP, et al. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One. 2018;13(1):e0190776.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang D, Feng D, Gao Y, et al. An effective method for trophectoderm biopsy using mechanical blunt dissection: a step-by-step demonstration. Fertil Steril. 2020;114(2):438–9.

    Article  PubMed  Google Scholar 

  28. Zhang S, Luo K, Cheng D, et al. The number of biopsied trophectoderm cells is likely to affect the implantation potential of blastocysts with poor trophectoderm quality. Fertil Steril. 2016;105(5):1222–7.

    Article  PubMed  Google Scholar 

  29. Guzman L, Nuñez D, López R, et al. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J Assist Reprod Genet. 2019;36(1):145–51.

    Article  PubMed  Google Scholar 

  30. ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group, Kokkali G, Coticchio G, et al. ESHRE PGT Consortium and SIG Embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod Open. 2020;2020(3):hoaa020.

    Article  PubMed Central  Google Scholar 

  31. Lagalla C, Tarozzi N, Sciajno R, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137–46.

    Article  PubMed  Google Scholar 

  32. ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online. 2017;35(5):494–510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, D., Gao, Y. (2024). Trophectoderm Biopsy. In: Quality Management in the Assisted Reproduction Laboratory. Springer, Singapore. https://doi.org/10.1007/978-981-99-6659-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6659-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6658-5

  • Online ISBN: 978-981-99-6659-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation