Charge Plasma TFET-Based Label-Free Biosensor for Healthcare Application

  • Reference work entry
  • First Online:
Handbook of Emerging Materials for Semiconductor Industry

Abstract

Because of the capability of biosensing technology in the medical field, environmental monitoring, and security applications, field-effect transistor-based biosensors are seeing accelerated growth in popularity. Recently, the use of silicon nanowires for biosensing has made it possible to miniaturize devices and improve sensing performance. However, reliability problems resulting from the difficulties of regulating the production parameters at nanoscale impede the sensing performance with the introduction of nanoscale BioFETs. Field-effect transistors have recently used the junctionless (JL) technique to get over manufacturing challenges where current is controlled by bulk conduction. JL transistors’ lack of steeper do** profiles simplifies manufacturing challenges and lowers device variability. Next-generation biosensors must be capable of detecting target molecules with increased sensitivity, rapid response, and reduced detection limit. However, advanced research is required to determine the possibility of junctionless transistors like biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weetall HH. Biosensor technology what? where? when? and why. Biosens Bioelectron. 1996;11:i–iv.

    Article  Google Scholar 

  2. Rasooly A. Moving biosensors to point-of-care cancer diagnostics. Biosens Bioelectron. 2006;10(21):1847–50.

    Article  Google Scholar 

  3. Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and develo** technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev. 2005;18(4):583–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hay Burgess DC, Wasserman J, Dahl CA. Global health diagnostics. Nature. 2006;444(1):1–2.

    Article  PubMed  Google Scholar 

  5. Th’evenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 2001;16(1–2):121–31.

    Google Scholar 

  6. Sang S, Zhang W, Zhao Y. Review on the design art of biosensors. In: State of the art in biosensors-general aspects. London: IntechOpen; 2013. p. 89–110.

    Google Scholar 

  7. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M. Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors. 2015;15(12):30 011–31.

    Article  CAS  Google Scholar 

  8. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karunakaran R, Keskin M. Biosensors: components, mechanisms, and applications. In: Analytical techniques in biosciences. Amsterdam: Elsevier; 2022. p. 179–90.

    Chapter  Google Scholar 

  10. Mello LD, Kubota LT. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 2002;77(2):237–56.

    Article  CAS  Google Scholar 

  11. Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J. Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces. 2015;7(31):16 953–9.

    Article  CAS  Google Scholar 

  12. Reddy NN, Panda DK. A comprehensive review on tunnel field-effect transistor (TFET) based biosensors: recent advances and future prospects on device structure and sensitivity. SILICON. 2021;13(9):3085–100.

    Article  CAS  Google Scholar 

  13. Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. Sensors. 2014;14(4):5890–928.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nair PR, Alam MA. Design considerations of silicon nanowire biosensors. IEEE Trans Electron Devices. 2007;54(12):3400–8.

    Article  CAS  Google Scholar 

  15. Samuel VR, Rao KJ. A review on label free biosensors. Biosens Bioelectron. 2022;X:100216.

    Google Scholar 

  16. Cooper MA. Label-free biosensors: techniques and applications. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  17. Renneberg R, Pfeiffer D, Lisdat F, Wilson G, Wollenberger U, Ligler F, Turner AP. Frieder scheller and the short history of biosensors. In: Biosensing for the 21st century. Berlin: Springer; 2007. p. 1–18.

    Google Scholar 

  18. da Silva Neves MMP, Gonz’alez-Garc’ıa MB, Hernandez-Santos D, Fanjul-Bolado P. Future trends in the market for electrochemical biosensing. Curr Opin Electrochem. 2018;10:107–11.

    Article  Google Scholar 

  19. Paul O, Rajan C, Samajdar DP, Hidouri T, Nasr S. Ge/GaAs based negative capacitance tunnel FET biosensor: proposal and sensitivity analysis. SILICON. 2022;14:10475–83.

    Article  CAS  PubMed Central  Google Scholar 

  20. Sen D, Patel SD, Sahay S. Dielectric modulated nanotube tunnel field effect transistor as a label free biosensor: proposal and investigation. IEEE Trans Nanobioscience. 2022;22(1):163–73.

    Article  PubMed  Google Scholar 

  21. Iqbal MY, Alam MS, Anand S, Amin SI. A FoM for investigation of SB TFET biosensor considering non-ideality. IEEE Trans Nanotechnol. 2022;21:251–8.

    Article  CAS  Google Scholar 

  22. Eastham JA, May R, Robertson JL, Sartor O, Kattan MW. Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/ml. Urology. 1999;54(4):709–13.

    Article  CAS  PubMed  Google Scholar 

  23. Chowdhury J, Sarkar A, Mahapatra K, Das J. Analytical modeling of dielectrically modulated broken-gate tunnel FET biosensor considering partial hybridization effect. Comput Electr Eng. 2022;99:107859.

    Article  Google Scholar 

  24. Vamvakaki V, Chaniotakis NA. Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosens Bioelectron. 2007;22(11):2650–5.

    Article  CAS  PubMed  Google Scholar 

  25. Chen L-C, Wang E, Tai C-S, Chiu Y-C, Li C-W, Lin Y-R, Lee T-H, Huang C-W, Chen J-C, Chen WL. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens Bioelectron. 2020;155:112111.

    Article  CAS  PubMed  Google Scholar 

  26. Singh AK, Tripathy MR, Baral K, Jit S. GaSb/GaAs type-ii heterojunction TFET on SELBOX substrate for dielectric modulated label-free biosensing application. IEEE Trans Electron Devices. 2022;69(9):5185–92.

    Article  CAS  Google Scholar 

  27. Bhattacharyya A, Chanda M, De D. Analysis of noise-immune do**less heterojunction bio-TFET considering partial hybridization issue. IEEE Trans Nanotechnol. 2020;19:769–77.

    Article  CAS  Google Scholar 

  28. Thusu R, et al. Strong growth predicted for biosensors market. Sensors. 2010.

    Google Scholar 

  29. Bergveld P. Development, operation, and application of the ion-sensitive field effect transistor as a tool for electrophysiology. IEEE Trans Biomed Eng. 1972;5:342–51.

    Article  Google Scholar 

  30. Kim D-S, Jeong Y-T, Park H-J, Shin J-K, Choi P, Lee J-H, Lim G. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens Bioelectron. 2004;20(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  31. Vu X, GhoshMoulick R, Eschermann J, Stockmann R, Offenhäusser A, Ingebrandt S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensors Actuators B Chem. 2010;144(2):354–60.

    Article  CAS  Google Scholar 

  32. Syu Y-C, Hsu W-E, Lin C-T. Field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol. 2018;7(7):Q3196.

    Article  CAS  Google Scholar 

  33. Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ. Field effect sensors for virus detection: From Ebola to SARS-CoV-2 and plant viral enhancers. Front Plant Sci. 2020;11:598103.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hwang MT, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, Faramarzi V, **g Y, Park I, van der Zande AM, et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat Commun. 2020;11(1):1–11.

    Article  Google Scholar 

  36. Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011;479(7373):329–37.

    Article  CAS  PubMed  Google Scholar 

  37. Pasupathy K, Manivannan T, Lakshminarayanan G. A review of engineering techniques to suppress ambipolarity in tunnel FET. SILICON. 2021;14:1887–94.

    Google Scholar 

  38. Uddin Shaikh MR, Loan SA. Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans Electron Devices. 2019;66(4):1628–34.

    Article  CAS  Google Scholar 

  39. Aghandeh H, Ziabari SAS. Gate engineered heterostructure junctionless TFET with Gaussian do** profile for ambipolar suppression and electrical performance improvement. Superlattice Microst. 2017;111:103–14.

    Article  CAS  Google Scholar 

  40. Hurkx G, Klaassen D, Knuvers M. A new recombination model for device simulation including tunneling. IEEE Trans Electron Devices. 1992;39(2):331–8.

    Article  Google Scholar 

  41. Madan J, Chaujar R. Palladium gate all around-hetero dielectric-tunnel FET based highly sensitive hydrogen gas sensor. Superlattice Microst. 2016;100:401–8.

    Article  CAS  Google Scholar 

  42. Chandan BV, Nigam K, Sharma D. Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection. Micro Nano Lett. 2018;13(4):452–6.

    Article  CAS  Google Scholar 

  43. Singh D, Pandey S, Nigam K, Sharma D, Yadav DS, Kondekar P. A charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans Electron Devices. 2017;64(1):271–8.

    Article  CAS  Google Scholar 

  44. Anand S, Singh A, Amin SI, Thool AS. Design and performance analysis of dielectrically modulated do**-less tunnel FET-based label free biosensor. IEEE Sensors J. 2019;19(12):4369–74.

    Article  CAS  Google Scholar 

  45. Mahalaxmi BA, Mishra GP. Design and analysis of dual-metal-gate double-cavity charge-plasma-TFET as a label free biosensor. IEEE Sensors J. 2020;20(23):13 969–75.

    Article  CAS  Google Scholar 

  46. Patil M, Gedam A, Mishra GP. Performance assessment of a cavity on source charge plasma TFET-based biosensor. IEEE Sensors J. 2021;21(3):2526–32.

    CAS  Google Scholar 

  47. Kumar S, Singh Y, Singh B, Tiwari PK. Simulation study of dielectric modulated dual channel trench gate TFET-based biosensor. IEEE Sensors J. 2020;20(21):12 565–73.

    Article  CAS  Google Scholar 

  48. Kwon J, Lee BH, Kim SY, Park JY, Bae H, Choi YK, Ahn JH. Nanoscale fetbased transduction toward sensitive extended-gate biosensors, ACS sensors. 2019;1724–1729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dewan, B., Chaudhary, S., Yadav, M. (2024). Charge Plasma TFET-Based Label-Free Biosensor for Healthcare Application. In: Song, Y.S., Thoutam, L.R., Tayal, S., Rahi, S.B., Samuel, T.S.A. (eds) Handbook of Emerging Materials for Semiconductor Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-6649-3_35

Download citation

Publish with us

Policies and ethics

Navigation