Functional Biomaterials for Targeted Drug Delivery Applications

  • Chapter
  • First Online:
Functional Smart Nanomaterials and Their Theranostics Approaches

Abstract

Targeted drug delivery approaches have been widely employed to regulate the absorption and biodistribution of small molecules and biologics at the targeted diseased sites to maximize therapeutic performances without affecting the healthy cells of the tissue or organ inside the body. For this purpose, it is essential to select effective biomaterial-based platforms that can release drugs in a sustained manner without altering their bioactivity and causing toxic effects in off-targeted tissues. Such biomaterials can be directly implanted/injected into the targeted diseased area of the body to enhance drug delivery efficiency. Various materials have been explored to fabricate targeted drug delivery systems. Functional biomaterials with desired physicochemical and biological properties are getting colossal attention because they can respond to their environmental cues, such as fluctuations in pH, temperature, or cell-associated enzymatic activity, and improve drug delivery integration and tissue regeneration. This chapter explores the progress of different approaches in functionalizing polymeric, metallic, and ceramic biomaterials for targeted drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adepu S, Ramakrishna S (2021) Controlled drug delivery systems: Current status and future directions. Molecules 26

    Google Scholar 

  2. Adhikari C, Das A, Chakraborty A (2015) Zeolitic imidazole framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol Pharm 12:3158–3166. https://doi.org/10.1021/ACS.MOLPHARMACEUT.5B00043

    Article  PubMed  CAS  Google Scholar 

  3. Alle M, Bandi R, Sharma G et al (2021) Current trends in engineered gold nanoparticles for cancer therapy. Nanotechnology in the life sciences. Springer, Cham, pp 1–40

    Google Scholar 

  4. Alle M, Park SC, Bandi R et al (2021) Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: recyclable nanozyme for the colorimetric glucose detection. Carbohydr Polym 253:117239. https://doi.org/10.1016/j.carbpol.2020.117239

    Article  PubMed  CAS  Google Scholar 

  5. Alle M, Reddy GB, Kim TH et al (2020) Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: microwave synthesis, characterization, and anti-cancer activity. Carbohydr Polym 229:115511. https://doi.org/10.1016/j.carbpol.2019.115511

    Article  PubMed  CAS  Google Scholar 

  6. Alle M, Sharma G, Lee S-H, Kim J-C (2022) Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 20:222. https://doi.org/10.1186/s12951-022-01402-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amina SJ, Guo B (2020) A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine 15:9823–9857. https://doi.org/10.2147/IJN.S279094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. An J, Gou Y, Yang C et al (2013) Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater Sci Eng C 33:2827–2837. https://doi.org/10.1016/j.msec.2013.03.008

    Article  CAS  Google Scholar 

  9. An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84

    Article  PubMed  CAS  Google Scholar 

  10. Anandhakumar S, Krishnamoorthy G, Ramkumar KM, Raichur AM (2017) Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater Sci Eng C 70:378–385. https://doi.org/10.1016/j.msec.2016.09.003

    Article  CAS  Google Scholar 

  11. Anderson SD, Gwenin VV, Gwenin CD (2019) Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett 14:1–6

    Google Scholar 

  12. Angelov B, Salviati G, Al Awadh AA et al (2022) Sustainable synthesis and characterization of zinc oxide nanoparticles using raphanus sativus extract and its biomedical applications. mdpi.com. https://doi.org/10.3390/cryst12081142

  13. Aoki K, Saito N (2020) Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials 10

    Google Scholar 

  14. Arun A, Malrautu P, Laha A et al (2021) Collagen nanoparticles in drug delivery systems and tissue engineering. Appl Sci (Switzerland) 11

    Google Scholar 

  15. Ashique S, Mittal V, Khatun T et al (2021) Micro-needles as an effective drug delivery system and associated patents in pharmaceutical field: a Review. irrespub.com. https://doi.org/10.55006/biolsciences.2021.1106

  16. Ashurbekova K, Ashurbekova K, Alonso-Lerma B et al (2022) Biocompatible silicon-based hybrid nanolayers for functionalization of complex surface morphologies. ACS Appl Nano Mater 5:2762–2768. https://doi.org/10.1021/ACSANM.1C04428

    Article  CAS  Google Scholar 

  17. Bajpai SK, Bajpai M, Dengre R (2003) Chemically treated hard gelatin capsules for colon-targeted drug delivery: a novel approach

    Google Scholar 

  18. Bandi R, Tummala S, Dadigala R et al (2021) Role of metal-doped carbon dots in bioimaging and cancer therapy. Nanotechnology in the life sciences. Springer, Cham, pp 101–123

    Google Scholar 

  19. Barbucci R, Pasqui D, Giani G et al (2011) A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains. Potential applications as a targeted drug delivery system. Soft Matter 7:5558–5565. https://doi.org/10.1039/c1sm05174a

    Article  CAS  Google Scholar 

  20. Bardhan M, Majumdar A, Jana S et al (2018) Mesoporous silica for drug delivery: interactions with model fluorescent lipid vesicles and live cells. J Photochem Photobiol B 178:19–26. https://doi.org/10.1016/J.JPHOTOBIOL.2017.10.023

    Article  PubMed  CAS  Google Scholar 

  21. Barkallah R, Taktak R, Guermazi N et al (2021) Mechanical properties and wear behaviour of alumina/tricalcium phosphate/titania ceramics as coating for orthopedic implant. Elsevier

    Google Scholar 

  22. Bobde Y, Biswas S, Ghosh B (2020) Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. Eur Polym J 139:110018. https://doi.org/10.1016/J.EURPOLYMJ.2020.110018

    Article  CAS  Google Scholar 

  23. Bojarová P, Tavares MR, Laaf D et al (2018) Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J Nanobiotechnology 16:1–16. https://doi.org/10.1186/S12951-018-0399-1/FIGURES/2

    Article  Google Scholar 

  24. Bootdee K, Grady BP, Nithitanakul M (2017) Magnetite/poly(D, L-lactide-co-glycolide) and hydroxyapatite/poly(D, L-lactide-co-glycolide) prepared by w/o/w emulsion technique for drug carrier: physical characteristic of composite nanoparticles. Colloid Polym Sci 295:2031–2040. https://doi.org/10.1007/S00396-017-4185-7

    Article  CAS  Google Scholar 

  25. Brown SD, Nativo P, Smith JA et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684. https://doi.org/10.1021/JA908117A/ASSET/IMAGES/LARGE/JA-2009-08117A_0006.JPEG

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Brown AN, Smith K, Samuels TA et al (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78:2768–2774. https://doi.org/10.1128/AEM.06513-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bruna T, Maldonado-Bravo F (2021) PJ-IJ Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22(13):7202. https://doi.org/10.3390/ijms22137202

  28. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR et al (2017) Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front Chem 5.https://doi.org/10.3389/FCHEM.2017.00006/FULL

  29. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5:1593–1615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chang J, Yuan X, Betbeder D et al (2010) Development of transferrin functionalized poly (ethylene glycol)/poly (lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain. Springer 21:2673–2681. https://doi.org/10.1007/s10856-010-4106-5

    Article  CAS  Google Scholar 

  31. Chytil P, Kostka L, Etrych T (2021) Hpma copolymer-based nanomedicines in controlled drug delivery. J Pers Med 11:1–22

    Article  Google Scholar 

  32. Cui J, Alt K, Ju Y et al (2019) Ligand-functionalized poly(ethylene glycol) particles for tumor targeting and intracellular uptake. Biomacromol 20:3592–3600. https://doi.org/10.1021/acs.biomac.9b00925

    Article  CAS  Google Scholar 

  33. Deb A, Vimala R (2018) Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J Drug Deliv Sci Technol 43:333–342. https://doi.org/10.1016/j.jddst.2017.10.025

    Article  CAS  Google Scholar 

  34. Decuzzi P, Cook AB (2021) Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano 15:2068–2098. https://doi.org/10.1021/ACSNANO.0C09115

    Article  PubMed  PubMed Central  Google Scholar 

  35. Delfi M, Ghomi M, Zarrabi A et al (2020) Functionalization of polymers and nanomaterials for biomedical applications: antimicrobial platforms and drug carriers. Prosthesis 2:117–139

    Article  Google Scholar 

  36. Desai N, Momin M, Khan T et al (2021) Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 18:1261–1290. https://doi.org/10.1080/17425247.2021.1912008

    Article  CAS  Google Scholar 

  37. Dutta SD, Ganguly K, Bandi R, Alle M (2021) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Nanotechnology in the life sciences. Springer, Cham, pp 155–171

    Google Scholar 

  38. Elhissi AMA, Ahmed W, Hassan IU et al (2012) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012:1–10. https://doi.org/10.1155/2012/837327

    Article  CAS  Google Scholar 

  39. Elias PZ, Liu GW, Wei H et al (2015) A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. J Control Release 208:76–84. https://doi.org/10.1016/j.jconrel.2015.03.003

    Article  PubMed  CAS  Google Scholar 

  40. Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 13.https://doi.org/10.1186/S11671-018-2728-6

  41. García-Hevia L, Valiente R (2016) Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale 8(21):10963–73

    Google Scholar 

  42. Gattás-Asfura KM, Weisman E, Andreopoulos FM et al (2005) Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromol 6:1503–1509. https://doi.org/10.1021/bm049238w

    Article  CAS  Google Scholar 

  43. Gomes HIO, Martins CSM, Prior JA V, Taglietti M (2021) Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 11:964. mdpi.com. https://doi.org/10.3390/nano11040964

  44. Gowda B, Ahmed M, Chinnam S et al (2022) Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. Elsevier

    Google Scholar 

  45. Guadie Assefa A, Adugna Mesfin A, Legesse Akele M et al (2017) Microwave-assisted green synthesis of gold nanoparticles using olibanum gum (boswellia serrate) and its catalytic reduction of 4-nitrophenol and hexacyanoferrate (III) by sodium borohydride. J Clust Sci. https://doi.org/10.1007/s10876-016-1078-8

    Article  Google Scholar 

  46. Gudkov SV, Burmistrov DE, Serov DA et al (2021) A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9.https://doi.org/10.3389/FPHY.2021.641481/FULL

  47. Gupta S, Singh R, Kumar V et al (2018) Ornamentation of triskelion peptide nanotori to produce gold nanoparticle (AuNP)-embedded peptide nanobangles. Chem Asian J 13:3285–3295. https://doi.org/10.1002/ASIA.201801270

    Article  PubMed  CAS  Google Scholar 

  48. Hoang Thi TT, Pilkington EH, Nguyen DH et al (2020) The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polym (Basel) 12(2):298. https://doi.org/10.3390/polym12020298

  49. Hoover S, Tarafder S, Bandyopadhyay A, Bose S (2017) Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications. Mater Sci Eng C 79:763–769. https://doi.org/10.1016/J.MSEC.2017.04.132

    Article  CAS  Google Scholar 

  50. Hu X, Tan H, Wang X, Chen P (2016) Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. Colloids Surf A Physicochem Eng Asp 489:297–304. https://doi.org/10.1016/j.colsurfa.2015.11.007

    Article  CAS  Google Scholar 

  51. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA https://doi.org/10.1016/C2021-0-02202-1

  52. Hussain A, Hasan A, Babadaei MMN et al (2020) Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 318

    Google Scholar 

  53. Imani R, Prakash S, Vali H, Faghihi S (2018) Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery †. Cite Biomater Sci 6:1636. https://doi.org/10.1039/c8bm00058a

    Article  CAS  Google Scholar 

  54. Ishii T, Otsuka H, Kataoka K, Nagasaki Y (2004) Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by α-Biotinyl-PEG-block-[poly(2-(N, N-dimethylamino)ethyl methacrylate)]. Langmuir 20:561–564. https://doi.org/10.1021/LA035653I

    Article  PubMed  CAS  Google Scholar 

  55. Ivanova N, Gugleva V, Dobreva M, Pehlivanov I (2018) Silver nanoparticles as multi-functional drug delivery systems. IntechOpen, 2019. https://doi.org/10.5772/intechopen

  56. Janisova L, Gruzinov A, Zaborova O et al (2020) Molecular mechanisms of the interactions of N-(2-Hydroxypropyl)methacrylamide copolymers designed for cancer therapy with blood plasma proteins. mdpi.com

    Google Scholar 

  57. Jiang J, Pi J (2018) applications JC-B chemistry and, 2018 undefined The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 1062562. https://doi.org/10.1155/2018/1062562

  58. **-Chul K, Madhusudhan A, Husen A (2021) Smart nanomaterials in biomedical applications. Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-84262-8

  59. ** X, Wang Q, Sun J et al (2017) P(NIPAM-co-AA)@BMMs with mesoporous silica core and controlled copolymer shell and its fractal characteristics for dual pH- and temperature-responsive performance of ibuprofen release. 67:131–142. https://doi.org/10.1080/00914037.2017.1309544

  60. Joshi P, Chakraborti S (2012) The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Elsevier 95:195–200. https://doi.org/10.1016/j.colsurfb.2012.02.039

  61. Kalimuthu K, Lubin BC, Bazylevich A, et al (2018) Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnology 16.https://doi.org/10.1186/s12951-018-0362-1

  62. Kebiroglu MH, Orek C, Bulut N et al (2017) Temperature dependent structural and vibrational properties of hydroxyapatite: a theoretical and experimental study. Ceram Int 43:15899–15904. https://doi.org/10.1016/j.ceramint.2017.08.164

    Article  CAS  Google Scholar 

  63. Kesharwani K, Singh R, Khan MJ et al (2021) Hydrophobized short peptide amphiphile functionalized gold nanoparticles as antibacterial biomaterials. ChemistrySelect 6:6827–6833. https://doi.org/10.1002/SLCT.202102204

    Article  CAS  Google Scholar 

  64. Kesharwani K, Singh R, Tripathi SK et al (2022) Antimicrobial activity of silver nanoparticles loaded biomimetic isomeric short lipopeptide nanostructures. ChemistrySelect 7.https://doi.org/10.1002/SLCT.202202234

  65. Kim A, Kim, (2019) Oxidation- and temperature-responsive poly(hydroxyethyl acrylate-co-phenyl vinyl sulfide) micelle as a potential anticancer drug carrier. Pharmaceutics 11:462. https://doi.org/10.3390/pharmaceutics11090462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kouser S, Hezam A, Khadri MJN, Khanum SA (2022) A review on zeolite imidazole frameworks: synthesis, properties, and applications. J Porous Mater 29:663–681. https://doi.org/10.1007/S10934-021-01184-Z

    Article  CAS  Google Scholar 

  67. Koziolová E, Kostka L, Kotrchová L et al (2018) N-(2-Hydroxypropyl)methacrylamide-based linear, diblock, and starlike polymer drug carriers: advanced process for their simple production. Biomacromol 19:4003–4013. https://doi.org/10.1021/ACS.BIOMAC.8B00973/ASSET/IMAGES/LARGE/BM-2018-00973K_0006.JPEG

    Article  Google Scholar 

  68. Kumar V, Gupta S, Mishra N et al (2017) Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures. Mater Res Express 4(3):035036

    Google Scholar 

  69. Kumari S, Tiyyagura HR, Pottathara YB et al (2021) Surface functionalization of chitosan as a coating material for orthopaedic applications: a comprehensive review. Carbohydr Polym 255

    Google Scholar 

  70. Lei J, Li X, Wang S et al (2019) Facile fabrication of biocompatible gelatin-based self-healing hydrogels. ACS Appl Polym Mater 1:1350–1358. https://doi.org/10.1021/acsapm.9b00143

    Article  CAS  Google Scholar 

  71. Li H, Xue F, Bai J et al (2015) Effect of sodium stearate on the surface properties of beta-calcium phosphate. Elsevier

    Google Scholar 

  72. Lin L, Dong Y, Zhou Q (2017) Sustained release of OIC-A006 from PLGA microspheres to induce osteogenesis of composite PLGA/β-TCP scaffolds. Sci Eng Compos Mater 24:721–730. https://doi.org/10.1515/SECM-2015-0372/HTML

    Article  CAS  Google Scholar 

  73. Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Luo T, David MA, Dunshee LC et al (2017) Thermoresponsive elastin-b-collagen-like peptide bioconjugate nanovesicles for targeted drug delivery to collagen-containing matrices. Biomacromol 18:2539–2551. https://doi.org/10.1021/acs.biomac.7b00686

    Article  CAS  Google Scholar 

  75. Ma F, Cui MF, Zhu JH, Li YL (2017) Porous hydroxyapatite microspheres prepared by using poly (allylamine hydrochloride) and its application in drug delivery. Wuji Cailiao Xuebao/J Inorganic Mater 32:1215–1222. https://doi.org/10.15541/jim20170041

  76. Madhusudhan A, Reddy GB, Krishana IM (2019) Green synthesis of gold nanoparticles by using natural gums. Nanomaterials and plant potential. Springer International Publishing, Cham, pp 111–134

    Chapter  Google Scholar 

  77. Madhusudhan A, Reddy G, Venkatesham M et al (2014) Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 15:8216–8234. https://doi.org/10.3390/ijms15058216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G (2012) Design and evaluation of efavirenz loaded solid lipid nanoparticles to improve the oral bioavailability. Int J Pharm Pharmaceutical Sci Res 2:84–89

    Google Scholar 

  79. Madhusudhan A, Reddy GB, Ambikar DB (2018) The effect of colon targeted delivery of celecoxib loaded microspheres on experimental colitis induced by acetic acid in rats

    Google Scholar 

  80. Mahato K, Nagpal S, Shah MA et al (2019) Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 9. https://doi.org/10.1007/S13205-019-1577-Z

  81. Mahmoudi Saber M (2019) Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf B Biointerfaces 183

    Google Scholar 

  82. Manatunga D, de Silva R (2017) pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Eur J Pharm and Biopharm 117:29–38. https://doi.org/10.1016/j.ejpb.2017.03.014

  83. Manzano M (2014) Ceramics for drug delivery. Bio Ceram Clin Appl 9781118406755:343–382. https://doi.org/10.1002/9781118406748.CH12

    Article  Google Scholar 

  84. Materón EM, Miyazaki CM, Carr O et al (2021) Magnetic nanoparticles in biomedical applications: a review. Appl Surf Sci Adv 6.https://doi.org/10.1016/j.apsadv.2021.100163

  85. Mauri E, Rossi F, Sacchetti A (2016) Tunable drug delivery using chemoselective functionalization of hydrogels. Mater Sci Eng C 61:851–857. https://doi.org/10.1016/j.msec.2016.01.022

    Article  CAS  Google Scholar 

  86. McNeel K, Siraj N, Negulescu I et al (2018) Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: ambient release, drug release, and enantiopreferential release. Elsevier

    Google Scholar 

  87. Mirjalili F, Mohammadi H, Azimi M et al (2017) Synthesis and characterization of β-TCP/CNT nanocomposite: morphology, microstructure and in vitro bioactivity. Elsevier

    Google Scholar 

  88. Moghaddam AB, Moniri M, Azizi S et al (2017) Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. mdpi.com. https://doi.org/10.3390/genes8100281

  89. Mohapatra A, Uthaman S, Park IK (2021) External and internal stimuli-responsive metallic nanotherapeutics for enhanced anticancer therapy. Front Mol Biosci 7.https://doi.org/10.3389/FMOLB.2020.597634/FULL

  90. Mortazavi-Derazkola S (2017), Green synthesis of magnetic Fe3O4/SiO2/HAp nanocomposite for atenolol delivery and in vivo toxicity study. J Cleaner Prod 168:39–50. https://doi.org/10.1016/j.jclepro.2017.08.235

  91. Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A (2016) Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci. https://doi.org/10.1007/s13204-015-0479-6

    Article  Google Scholar 

  92. Nagy G, Király G, Veres P et al (2019) Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth. Int J Pharm 558:396–403. https://doi.org/10.1016/j.ijpharm.2019.01.024

    Article  PubMed  CAS  Google Scholar 

  93. Nahar M, Dubey V, Mishra D et al (2010) In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target 18:93–105. https://doi.org/10.3109/10611860903115290

    Article  PubMed  CAS  Google Scholar 

  94. Nan A, Nanayakkara NPD, Walker LA et al (2001) N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. J Control Release 77:233–243. https://doi.org/10.1016/S0168-3659(01)00514-4

    Article  PubMed  CAS  Google Scholar 

  95. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. Springer Science & Business Media 17

    Book  Google Scholar 

  96. Nikolova M, Biomimetics MC (2020) Metal oxide nanoparticles as biomedical materials. mdpi.com 201 https://doi.org/10.3390/biomimetics5020027

  97. Novy Z, Lobaz V, Vlk M et al (2020) Head-To-head comparison of biological behavior of biocompatible polymers poly (ethylene oxide), poly (2-ethyl-2-oxazoline) and poly [N-(2-hydroxypropyl). mdpi.com

    Google Scholar 

  98. Park C, Youn H, Kim H et al (2009) Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. pubs.rsc.org 19:2261–2440. https://doi.org/10.1039/B816209C

  99. Patil S V., Shelake SS, Patil SS (2018) Polymeric materials for targeted delivery of bioactive agents and drugs. In: Fundamental biomaterials: polymers. Elsevier Inc., pp 249–266

    Google Scholar 

  100. Prakash S, Malhotra M, Shao W et al (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63:1340–1351

    Article  PubMed  CAS  Google Scholar 

  101. Prieto G, Barbosa S, Buyana B, et al (2022) Nanoparticles loaded with platinum drugs for colorectal cancer therapy. mdpi.com. https://doi.org/10.3390/ijms231911261

  102. Qiu H, Guo H, Li D et al (2020) Intravesical hydrogels as drug reservoirs. Trends Biotechnol 38:579–583. https://doi.org/10.1016/J.TIBTECH.2019.12.012

    Article  PubMed  CAS  Google Scholar 

  103. Radaic A, Joo NE, Jeong S-H et al (2021) Phosphatidylserine-gold nanoparticles (PS-AuNP) induce prostate and breast cancer cell apoptosis. mdpi.com. https://doi.org/10.3390/pharmaceutics13071094

  104. Saberinasab A, Raissi H, Hashemzadeh H (2019) Understanding the effect of vitamin B6 and PEG functionalization on improving the performance of carbon nanotubes in temozolomide anticancer drug transportation. J Phys D Appl Phys 52.https://doi.org/10.1088/1361-6463/ab2abf

  105. Saikia N (2018) Functionalized carbon nanomaterials in drug delivery: emergent perspectives from application. In: Novel nanomaterials-synthesis and applications. InTech

    Google Scholar 

  106. Saito N, Haniu H, Usui Y et al (2014) Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 114:6040–6079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sanginario A, Miccoli B, Demarchi D (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (Basel) 7

    Google Scholar 

  108. Santoro M, Tatara AM, Mikos AG (2014) Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 190:210–218

    Article  PubMed  CAS  Google Scholar 

  109. Selvakannan PR, Mandal S, Phadtare S et al (2003) Cap** of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549. https://doi.org/10.1021/LA026906V

    Article  CAS  Google Scholar 

  110. Shi L, Zhang J, Zhao M et al (2021) Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery 13:10748. https://doi.org/10.1039/d1nr02065j

    Article  CAS  Google Scholar 

  111. Shi P, Wang Q, Yu C et al (2017) Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration. Elsevier

    Google Scholar 

  112. Shyong Y, Wang M, Kuo L et al (2017) Mesoporous hydroxyapatite as a carrier of olanzapine for long-acting antidepression treatment in rats with induced depression. Elsevier

    Google Scholar 

  113. Singh R, Suryavashi V, Vinayak V, Joshi KB (2019) Gold-ions-mediated diproline peptide nanocarpets and their inhibition of bacterial growth. ChemistrySelect 4:5810–5816. https://doi.org/10.1002/SLCT.201900847

    Article  CAS  Google Scholar 

  114. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/S40820-015-0040-X

    Article  PubMed  CAS  Google Scholar 

  115. Sreedharan S, Nanomedicine (2019) RS-IJ of, 2019 Ciprofloxacin functionalized biogenic gold nanoflowers as nanoantibiotics against pathogenic bacterial strains. Taylor & Francis 14:9905–9916. https://doi.org/10.2147/IJN.S224488

  116. Sun L, Liu D, Wang Z (2008) Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir 24:10293–10297. https://doi.org/10.1021/LA8015063

    Article  PubMed  CAS  Google Scholar 

  117. Sun R, Lv Y, Niu Y et al (2017) Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders. Ceram Int 43(18):16792–8

    Google Scholar 

  118. Sur S, Rathore A, Dave V et al (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct Nano Objects 20

    Google Scholar 

  119. Tripathi SK, Kesharwani K, Kaul G et al (2022) Amyloid-β inspired short peptide amphiphile facilitates synthesis of silver nanoparticles as potential antibacterial agents. ChemMedChem 17.https://doi.org/10.1002/CMDC.202200251

  120. Venkatasubbu G, Ramasamy S (2013) Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Elsevier 235:437–42. https://doi.org/10.1016/j.powtec.2012.11.003

  121. Wang Y, Cao Y, Jiang Z et al (2021) The neuropeptide Y1receptor ligand-modified cell membrane promotes targeted photodynamic therapy of zeolitic imidazolate frameworks for breast cancer. J Phys Chem Lett 12:11280–11287. https://doi.org/10.1021/ACS.JPCLETT.1C03562

    Article  PubMed  CAS  Google Scholar 

  122. Wang Y, Yang T (2020) Strategies for engineering advanced nanomedicines for gas therapy of cancer. National Science Review 7(9):1485-512.

    Google Scholar 

  123. Woehrle GH, Brown LO, Hutchison JE (2005) Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Chem Soc 127:2172–2183. https://doi.org/10.1021/JA0457718/SUPPL_FILE/JA0457718SI20041111_124011.PDF

    Article  PubMed  CAS  Google Scholar 

  124. Wu Q, Niu M, Chen X et al (2018) Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 162:132–143. https://doi.org/10.1016/J.BIOMATERIALS.2018.02.022

    Article  PubMed  CAS  Google Scholar 

  125. Xu Z, Wang S, Li Y et al (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces 6:17268–17276. https://doi.org/10.1021/am505308f

    Article  PubMed  CAS  Google Scholar 

  126. Xu J-J, Zhang W-C, Guo Y-W et al (2022). Metal nanoparticles as a promising technology in targeted cancer treatment. https://doi.org/10.1080/10717544.2022.2039804

    Article  Google Scholar 

  127. Yadav D, Dewangan HK (2020) PEGYLATION: an important approach for novel drug delivery system. 32:266–280. https://doi.org/10.1080/09205063.2020.1825304

  128. Yan J, Liu C, Wu Q et al (2020) Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Anal Chem 92:11453–11461. https://doi.org/10.1021/ACS.ANALCHEM.0C02599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Yang X, Wen Y, Wu A et al (2017) Polyglycerol mediated covalent construction of magnetic mesoporous silica nanohybrid with aqueous dispersibility for drug delivery. Mater Sci Eng C 80:517–525. https://doi.org/10.1016/J.MSEC.2017.06.022

    Article  CAS  Google Scholar 

  130. Yang Y, **a F, Yang Y et al (2017) Litchi-like Fe 3 O 4 @Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J Mater Chem B 5:8600–8606. https://doi.org/10.1039/C7TB01680H

    Article  PubMed  CAS  Google Scholar 

  131. Yin IX, Zhang J, Zhao IS et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Taylor & Francis 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    Article  CAS  Google Scholar 

  132. Zamani M, Rostami M, Aghajanzadeh M et al (2018) Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci 53:1634–1645. https://doi.org/10.1007/S10853-017-1673-6

    Article  CAS  Google Scholar 

  133. Zang S, Chang S, Shahzad MB et al (2019) Ceramics-based drug delivery system: a review and outlook. Rev Adv Mater Sci 58:82–97. https://doi.org/10.1515/RAMS-2019-0010/HTML

    Article  Google Scholar 

  134. Zhang J, Wu D, Li M et al (2015) Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug. ACS Publications 7:26666–26673. https://doi.org/10.1021/acsami.5b08460

    Article  CAS  Google Scholar 

  135. Zhang X, Liu Z, Shen W et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. mdpi.com. https://doi.org/10.3390/ijms17091534

  136. Zhao Y, Tian Y, Cui Y et al (2010) Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Am Chem Soc 132:12349–12356. https://doi.org/10.1021/JA1028843

    Article  PubMed  CAS  Google Scholar 

  137. Zharkova MS, Golubeva OY, Orlov DS et al (2021) Silver nanoparticles functionalized with antimicrobial polypeptides: benefits and possible pitfalls of a novel anti-infective tool. Front Microbiol 12.https://doi.org/10.3389/FMICB.2021.750556/FULL

  138. Zhu ZJ, Ghosh PS, Miranda OR et al (2008) Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J Am Chem Soc 130:14139–14143. https://doi.org/10.1021/JA805392F

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zhu R, Wang Z, Liang P et al (2017) Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@ LDH for anti-neuroblastoma therapy. Elsevier 63:163–80. https://doi.org/10.1016/j.actbio.2017.09.009

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhiraj Bhatia or Mukesh Dhanka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H. et al. (2024). Functional Biomaterials for Targeted Drug Delivery Applications. In: Madhusudhan, A., Purohit, S.D., Prasad, R., Husen, A. (eds) Functional Smart Nanomaterials and Their Theranostics Approaches. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6597-7_2

Download citation

Publish with us

Policies and ethics

Navigation