CLOE: Novelty Detection via Contrastive Learning with Outlier Exposure

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14273))

Included in the following conference series:

  • 670 Accesses

Abstract

Novelty detection (ND) methods seek to identify anomalies within a specific dataset. Although self-supervised representation learning is commonly used in such applications, inadequate training data may reduce the effectiveness of these methods. It is thus reasonable to use external data to improve these performances. Here, we propose a simple and effective network, CLOE, for image-based novelty detection. Our method includes a pretrained ViT model as a feature extractor and employs the contrastive learning technique to train the dataset with external data. We compare the performance of two types of extra training settings: (1) The augmented data of the original dataset. (2) The fake images obtained from generative models. The demonstrated approach achieves a new state-of-the-art performance in novelty detection, as evidenced by achieving an ROC-AUC of 99.72% on the CIFAR-10 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges. ar**v preprint ar**v:2110.14051 (2021)

  2. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  3. Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2805–2813. IEEE (2021)

    Google Scholar 

  4. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure (2018)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  7. Bergman, L., Cohen, N., Hoshen, Y.: Deep nearest neighbor anomaly detection. ar**v preprint ar**v:2002.10445 (2020)

  8. Ruff, L., Vandermeulen, R.A., Görnitz, N., Deecke, L., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning (2018)

    Google Scholar 

  9. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)

    Google Scholar 

  10. Liu, Z., Zhou, Y., Xu, Y., Wang, Z.: SimpleNet: a simple network for image anomaly detection and localization. ar**v preprint ar**v:2303.15140 (2023)

  11. Murase, H., Fukumizu, K.: ALGAN: anomaly detection by generating pseudo anomalous data via latent variables. IEEE Access 10, 44259–44270 (2022)

    Article  Google Scholar 

  12. Cohen, M.J., Avidan, S.: Transformaly-two (feature spaces) are better than one. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4060–4069 (2022)

    Google Scholar 

  13. Mirzaei, H., et al.: Fake it until you make it: towards accurate near-distribution novelty detection. In: NeurIPS ML Safety Workshop

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. ar**v preprint ar**v:1808.06670 (2018)

  16. He, K., Fan, H., Wu, Y., **e, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. Reiss, T., Hoshen, Y.: Mean-shifted contrastive loss for anomaly detection. ar**v preprint ar**v:2106.03844 (2021)

  18. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses. ar**v preprint ar**v:2104.10972 (2021)

  19. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  20. Sohn, K., Li, C.L., Yoon, J., **, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. ar**v preprint ar**v:2011.02578 (2020)

  21. Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. Adv. Neural. Inf. Process. Syst. 33, 11839–11852 (2020)

    Google Scholar 

  22. Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Müller, K.R., Kloft, M.: Exposing outlier exposure: what can be learned from few, one, and zero outlier images. ar**v preprint ar**v:2205.11474 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, T., Liang, Q., Yang, H. (2023). CLOE: Novelty Detection via Contrastive Learning with Outlier Exposure. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation