Non-commutative Stone Duality

  • Conference paper
  • First Online:
Semigroups, Algebras and Operator Theory (ICSAOT 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 436))

Included in the following conference series:

  • 134 Accesses

Abstract

I show explicitly that Boolean inverse semigroups are in duality with Boolean groupoids, a class of étale topological groupoids; this is what we mean by the term ‘non-commutative Stone duality’. This generalizes classical Stone duality, which we refer to as ‘commutative Stone duality’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, filters will be assumed non-empty.

  2. 2.

    The fairy godmother of mathematics.

  3. 3.

    Not an established term.

  4. 4.

    Strictly speaking, ‘reverse definite’.

  5. 5.

    I made this word up. It comes from the Greek word ‘kallos’ meaning beauty. I simply wanted to indicate that these maps were sufficiently ‘nice’.

  6. 6.

    A term taken from ring theory.

  7. 7.

    The definition we have given here looks different from the one given in [30] but is equivalent by using [47].

References

  1. Burris, S.: The laws of Boole’s thought. http://www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/PREPRINTS/aboole.pdf

  2. Burris, S., Sankappanavar, H.P.: A course in universal algebra, The Millennium edn. Freely available from http://math.hawaii.edu/~ralph/Classes/619/

  3. de Castro, G.G.: Coverages on inverse semigroups. Semigroup Forum 102, 375–396 (2021)

    Google Scholar 

  4. Doctor, H.P.: The categories of Boolean lattices, Boolean rings and Boolean spaces. Canad. Math. Bull. 7, 245–252 (1964)

    Article  MathSciNet  Google Scholar 

  5. Ehresmann, Ch.: Oeuvres complètes et commentées, In: A.C. Ehresmann (ed.) Supplements to Cah. Topologie Géométrie Différentielle Catégoriques, Amiens, 1980–1983

    Google Scholar 

  6. Exel. R.: Inverse semigroups and combinatorial \(C^{*}\)-algebras. Bull. Braz. Maths. Soc. (N.S.) 39, 191–313 (2008)

    Google Scholar 

  7. Foster, A.L.: The idempotent elements of a commutative ring form a Boolean algebra; ring duality and transformation theory. Duke Math. J. 12, 143–152 (1945)

    Article  MathSciNet  Google Scholar 

  8. Gehrke, M., Grigorieff, S., Pin, J.-E.: Duality and equational theory of regular languages. Lecture Notes in Computer Science 5126, pp. 246–257. Springer (2008)

    Google Scholar 

  9. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer (2009)

    Google Scholar 

  10. Higgins, Ph.J.: Categories and Groupoids. Van Nostrand Reinhold Company, London (1971)

    Google Scholar 

  11. Hailperin, T.: Boole’s algebra isn’t Boolean algebra. Math. Mag. 54, 172–184 (1981)

    Google Scholar 

  12. Johnstone, P.T.: Stone spaces. CUP (1986)

    Google Scholar 

  13. Kellendonk, J.: The local structure of tilings and their integer groups of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)

    Article  MathSciNet  Google Scholar 

  14. Kellendonk, J.: Topological equivalence of tilings, J. Math. Phys. 38, 1823–1842 (1997)

    Google Scholar 

  15. Koppelberg, S.: Handbook of Boolean Algebra, vol. 1. North-Holland (1989)

    Google Scholar 

  16. Kudryavtseva, G., Lawson, M.V., Lenz, D.H., Resende, P.: Invariant means on Boolean inverse monoids. Semigroup Forum 92, 77–101 (2016)

    Google Scholar 

  17. Kudryavtseva, G., Lawson, M.V.: Perspectives on non-commutative frame theory. Adv. Math. 311, 378–468 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kumjian. A.: On localizations and simple \(C^{*}\)-algebras. Pacific J. Math. 112, 141–192 (1984)

    Google Scholar 

  19. Lawson, M.V.: Coverings and embeddings of inverse semigroups. Proc. Edinb. Math. Soc. 36, 399–419 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific (1998)

    Google Scholar 

  21. Lawson, M.V.: Finite Automata. Chapman and Hall/CRC (2003)

    Google Scholar 

  22. Lawson, M.V.: The polycyclic monoids \(P_n\) and the Thompson groups \(V_{n,1}\). Comm. Algebra 35, 4068–4087 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lawson, M.V.: A class of subgroups of Thompson’s group \(V\). Semigroup Forum 75, 241–252 (2007)

    Google Scholar 

  24. Lawson, M.V.: A non-commutative generalization of Stone duality. J. Aust. Math. Soc. 88, 385–404 (2010)

    Article  MathSciNet  Google Scholar 

  25. Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and \(C^{*}\)-algebras. Int. J. Algebra Comput. 22, 1250058 (2012). https://doi.org/10.1142/S0218196712500580

    Article  MathSciNet  Google Scholar 

  26. Lawson, M.V.: Subgroups of the group of homeomorphisms of the Cantor space and a duality between a class of inverse monoids and a class of Hausdorff étale groupoids. J. Algebra 462, 77–114 (2016)

    Article  MathSciNet  Google Scholar 

  27. Lawson, M.V.: Tarski monoids: Matui’s spatial realization theorem. Semigroup Forum 95, 379–404 (2017)

    Article  MathSciNet  Google Scholar 

  28. Lawson, M.V.: The Booleanization of an inverse semigroup. Semigroup Forum 100, 283–314 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lawson, M.V.: Finite and semisimple Boolean inverse monoids. ar**v:2102.12931

  30. Lawson, M.V., Lenz, D.H.: Pseudogroups and their étale groupoids. Adv. Math. 244, 117–170 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lawson, M.V., Margolis, S.W., Steinberg, B.: The étale groupoid of an inverse semigroup as a groupoid of filters. J. Aust. Math. Soc. 94, 234–256 (2014)

    Article  Google Scholar 

  32. Lawson, M.V., Scott, P.: AF inverse monoids and the structure of countable MV-algebras. J. Pure Appl. Algebra 221, 45–74 (2017)

    Google Scholar 

  33. Lawson, M.V., Vdovina, A.: The universal Boolean inverse semigroup presented by the abstact Cuntz-Krieger relations. J. Noncommut. Geom. 15, 279–304 (2021)

    Google Scholar 

  34. Leech, J.: Inverse monoids with a natural semilattice ordering. Proc. London Math. Soc. (3) 70, 146–182 (1995)

    Google Scholar 

  35. Lenz, D.H.: On an order-based construction of a topological groupoid from an inverse semigroup. Proc. Edinb. Math. Soc. 51, 387–406 (2008)

    Article  MathSciNet  Google Scholar 

  36. Malandro, M.E.: Fast Fourier transforms for finite inverse semigroups. J. Algebra 324, 282–312 (2010)

    Article  MathSciNet  Google Scholar 

  37. Matsnev, D., Resende, P.: Etale groupoids as germ groupoids and their base extensions. Proc. Edinb. math. Soc. 53, 765–785 (2010)

    Google Scholar 

  38. Matui, H.: Homology and topological full groups of étale groupoids on totally disconnected spaces. Proc. London Math. Soc. (3) 104, 27–56 (2012)

    Google Scholar 

  39. Matui, H.: Topological full groups of one-sided shifts of finite type. J. Reine Angew. Math. 705, 35–84 (2015)

    Google Scholar 

  40. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)

    Google Scholar 

  41. Nyland, P., Ortega, E.: Topological full groups of ample groupoids with applications to graph algebras. Int. J. Math. 30, 1950018 (2019)

    Google Scholar 

  42. Paterson, A.L.T.: Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Mathematics, vol. 170. Birkhäuser, Boston (1998)

    Google Scholar 

  43. Pin, J.-E.: Dual space of a lattice as the completion of a Pervin space. In: P. Höfner et al. (ed.) RAMiCS 2017. LNCS 10226, pp. 24–40 (2017)

    Google Scholar 

  44. Pippenger, N.: Regular languages and stone duality. Theory Comput. Syst. 30, 121–134 (1997)

    Article  MathSciNet  Google Scholar 

  45. Renault, J.: A Groupoid Approach to \(C^{*}\)-Algebras. Lecture Notes in Mathematics, vol. 793. Springer (1980)

    Google Scholar 

  46. Resende, P.: Lectures on Étale groupoids, inverse semigroups and quantales. Lecture Notes for the GAMAP IP Meeting, Antwerp, 4–18 September, 2006, 115pp. https://www.math.tecnico.ulisboa.pt/~pmr/poci55958/gncg51gamap-version2.pdf

  47. Resende, P.: A note on infinitely distributive inverse semigroups. Semigroup Forum 73, 156–158 (2006)

    Article  MathSciNet  Google Scholar 

  48. Resende, P.: Etale groupoids and their quantales. Adv. Math. 208, 147–209 (2007)

    Article  MathSciNet  Google Scholar 

  49. Schein, B.: Completions, translational hulls, and ideal extensions of inverse semigroups. Czechoslovak Math. J. 23, 575–610 (1973)

    Article  MathSciNet  Google Scholar 

  50. Sikorski, R.: Boolean Algebras, 3rd edn. Springer (1969)

    Google Scholar 

  51. Solomon, L.: Representations of rook monoids. J. Algebra 256, 309–342 (2002)

    Article  MathSciNet  Google Scholar 

  52. Simmons, G.F.: Introduction to Topology and Analysis. McGraw-Hill Kogakusha, Ltd, (1963)

    Google Scholar 

  53. Sims, A.: Hausdorff étale groupoids and their \(C^{*}\)-algebra. ar**v:1710.10897

  54. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)

    MathSciNet  Google Scholar 

  55. Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41, 375–481 (1937)

    Article  MathSciNet  Google Scholar 

  56. Stone, M.H.: Topological representations of distributive lattices and Brouwerian logics. Časopis Pro Pestovani Matematiky a Fysiky 67, 1–25 (1937)

    Google Scholar 

  57. Vickers, S.: Topology via Logic. CUP (1989)

    Google Scholar 

  58. Wehrung. F.: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Monoids. Lecture Notes in Mathematics, vol. 2188. Springer (2017)

    Google Scholar 

  59. Willard, S.: General Topology. Dover (2004)

    Google Scholar 

Download references

Acknowledgements

Some of the work for this chapter was carried out at LaBRI, Université de Bordeaux, during April 2018 while visiting David Janin. I am also grateful to Phil Scott for alerting me to typos. None of this work would have been possible without my collaboration with Daniel Lenz, and some very timely conversations with Pedro Resende. This chapter is dedicated to the memory of Iain Currie, colleague and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark V. Lawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lawson, M.V. (2023). Non-commutative Stone Duality. In: Ambily, A.A., Kiran Kumar, V.B. (eds) Semigroups, Algebras and Operator Theory. ICSAOT 2022. Springer Proceedings in Mathematics & Statistics, vol 436. Springer, Singapore. https://doi.org/10.1007/978-981-99-6349-2_2

Download citation

Publish with us

Policies and ethics

Navigation