The Evolution and Emergence of 2D Nanomaterial Based Electro-Chemical and Fluorescent Biosensors

  • Chapter
  • First Online:
Advanced Materials for Biomedical Applications

Abstract

The precise functionalization of nanostructures and recent advancement in the same field have created new opportunities for biosensors that may be used in real-world scenarios. Two-dimensional (2D) nanomaterials stand out for their extraordinary qualities such as chemical activity, anisotropic traits and mechanical process. In order to monitor metabolic and biological processes, biosensors turnout to be very effective tools. The advancement of innovative nanomaterials as sensing platforms is being driven by the rising demand for bioassays for which the procedures might include everything from illness therapy to clinical diagnosis. Here in this book chapter, we have discussed about emerging 2D nanomaterials, their synthesis and their composites for biosensing application. Synthesis and working mechanisms of electro-chemical and fluorescent biosensors based on 2D nanomaterial composites including 2D metal organic framework (MOF), MXene and hexagonal boron nitride (h-BN) are also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MB:

Methylene blue

NP:

Nanoparticle

CD:

Carbon dots

BTEC:

Benzene-1,2,4,5-tetracarboxylate

DMF:

N, N-dimethyl formamide

GCE:

Glassy carbon electrodes

AuNR:

Gold nanorods

PDMS:

Polydimethylsiloxane

PANI:

Polyaniline

LBG:

Laser burned graphene

DSPE-PEG:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

PDDA:

Polydiallyldimethylammonium chloride

POM:

Polyoxometalate

CPE:

Carbon paste electrode

HMICl:

1-Hexyl-3-methylimidazolium chloride

References

  1. Alagarasi A (2013) Chapter-introduction to nanomaterials. Indian Inst Technol Madras 1–24

    Google Scholar 

  2. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80

    Article  CAS  Google Scholar 

  3. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871

    Article  Google Scholar 

  4. Kumar N, Kumbhat S (2016) Essentials in nanoscience and nanotechnology. Wiley, New Nork

    Google Scholar 

  5. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  Google Scholar 

  6. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774

    Article  CAS  Google Scholar 

  7. Bai H, Gao H, Feng W, Zhao Y, Wu Y (2019) Interaction in Li@ fullerenes and Li+@ fullerenes: first principle insights to Li-based endohedral fullerenes. Nanomaterials 9(4):630

    Article  CAS  Google Scholar 

  8. Minami K, Okamoto K, Harano K, Noiri E, Nakamura E (2018) Hierarchical assembly of siRNA with tetraamino fullerene in physiological conditions for efficient internalization into cells and knockdown. ACS Appl Mater Interfaces 10(23):19347–19354

    Article  CAS  Google Scholar 

  9. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electro-chemical biosensors: Recommended definitions and classification. Pure Appl Chem 71(12):2333–2348

    Article  CAS  Google Scholar 

  10. Zhao Y, Zeng H, Zhu XW, Lu W, Li D (2021) Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem Soc Rev 50(7):4484–4513

    Article  CAS  Google Scholar 

  11. Song WJ (2017) Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta 1(170):74–80

    Article  Google Scholar 

  12. Jung HS, Verwilst P, Kim WY, Kim JS (2016) Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev 45(5):1242–1256

    Article  CAS  Google Scholar 

  13. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6(4):20160027

    Article  Google Scholar 

  14. Kokulnathan T, Ashok Kumar E, Wang TJ (2020) Design and in situ synthesis of titanium carbide/boron nitride nanocomposite: Investigation of electrocatalytic activity for the sulfadiazine sensor. ACS Sustain Chem Eng 8(33):12471–12481

    Article  CAS  Google Scholar 

  15. Lin Q, Zou X, Zhou G, Liu R, Wu J, Li J, Duan W (2011) Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: An ab initio study. Phys Chem Chem Phys 13(26):12225–12230

    Article  CAS  Google Scholar 

  16. Liu B, Wang X, Liu H, Zhai Y, Li L, Wen H (2020) 2D MOF with electro-chemical exfoliated graphene for nonenzymatic glucose sensing: central metal sites and oxidation potentials. Anal Chim Acta 25(1122):9–19

    Google Scholar 

  17. Ma HM, Yi JW, Li S, Jiang C, Wei JH, Wu YP, Zhao J, Li DS (2019) Stable bimetal-MOF ultrathin nanosheets for pseudocapacitors with enhanced performance. Inorg Chem 58(15):9543–9547

    Article  CAS  Google Scholar 

  18. Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X (2019) Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem 91(15):10156–10163

    Article  CAS  Google Scholar 

  19. Wei W, Lin H, Shao H, Hao T, Wang S, Hu Y, Guo Z, Su X (2020) Faraday cage-type aptasensor for dual-mode detection of Vibrio parahaemolyticus. Microchim Acta 187:1–9

    Article  Google Scholar 

  20. Wang Z, Wang G, Qi H, Wang M, Wang M, Park S, Wang H, Yu M, Kaiser U, Fery A, Zhou S (2020) Ultrathin two-dimensional conjugated metal-organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem Sci 11(29):7665–7671

    Article  CAS  Google Scholar 

  21. Dinca M, Long JR (2005) Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C–C10H6–CO2)3. J Am Chem Soc 127(26):9376–9377

    Article  CAS  Google Scholar 

  22. Qiu Z, Yang T, Gao R, Jie G, Hou W (2019) An electro-chemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. J Electroanal Chem 15(835):123–129

    Article  Google Scholar 

  23. Lu Z, Na G, Gao H, Wang L, Bao C, Yao Z (2015) Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Sci Total Environ 15(527):429–438

    Article  Google Scholar 

  24. **ao J, Hu X, Wang K, Zou Y, Gyimah E, Yakubu S, Zhang Z (2020) A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP (Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electro-chemical immunosensor for sulfonamide detection. Biosens Bioelectron 15(150):111883

    Article  Google Scholar 

  25. Wang Z, Zhang Y, Wang X, Han L (2022) Flow-homogeneous electro-chemical sensing system based on 2D metal-organic framework nanozyme for successive microRNA assay. Biosens Bioelectron 15(206):114120

    Article  Google Scholar 

  26. Zhang Y, Li B, Ma H, Zhang L, Zheng Y (2016) Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 15(85):287–293

    Article  Google Scholar 

  27. Wang HS, Li J, Li JY, Wang K, Ding Y, **a XH (2017) Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater 9(3):e354–e354

    Article  CAS  Google Scholar 

  28. Zhu K, Fan R, Zheng X, Wang P, Chen W, Sun T, Gai S, Zhou X, Yang Y (2019) Dual-emitting dye-CDs@ MOFs for selective and sensitive identification of antibiotics and MnO4 in water. J Mater Chem C 7(47):15057–15065

    Article  CAS  Google Scholar 

  29. Huang YL, Qiu PL, Bai JP, Luo D, Lu W, Li D (2019) Exclusive recognition of acetone in a luminescent BioMOF through multiple hydrogen-bonding interactions. Inorg Chem 58(12):7667–7671

    Article  CAS  Google Scholar 

  30. Xu H, Gao J, Qian X, Wang J, He H, Cui Y, Yang Y, Wang Z, Qian G (2016) Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe 3+. J Mater Chem A 4(28):10900–10905

    Article  CAS  Google Scholar 

  31. Tang T, Liu M, Chen Z, Wang X, Lai C, Ding L, Zeng C (2022) Highly sensitive luminescent lanthanide metal-organic framework sensor for L-kynurenine. J Rare Earths 40(3):415–420

    Article  CAS  Google Scholar 

  32. Yan D, Lou Y, Yang Y, Chen Z, Cai Y, Guo Z, Zhan H, Chen B (2019) Dye-modified metal-organic framework as a recyclable luminescent sensor for nicotine determination in urine solution and living cell. ACS Appl Mater Interfaces 11(50):47253–47258

    Article  CAS  Google Scholar 

  33. Xu H, Hu HC, Cao CS, Zhao B (2015) Lanthanide organic framework as a regenerable luminescent probe for Fe3+. Inorg Chem 54(10):4585–4587

    Article  CAS  Google Scholar 

  34. Dai C, Gan Y, Qin J, Ma L, Liu Q, Huang L, Yang Z, Zang G, Zhu S (2023) An ultrasensitive solid-state ECL biosensor based on synergistic effect between Zn-NGQDs and porphyrin-based MOF as “on-off-on” platform. Colloids Surf, B 20:113322

    Article  Google Scholar 

  35. Wang B, Yan B (2020) A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine. Talanta 1(208):120438

    Article  Google Scholar 

  36. Zhang Q, Lei M, Kong F, Yang Y (2018) A water-stable homochiral luminescent MOF constructed from an achiral acylamide-containing dicarboxylate ligand for enantioselective sensing of penicillamine. Chem Commun 54(77):10901–10904

    Article  CAS  Google Scholar 

  37. Jalili R, Khataee A, Rashidi MR, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sens Actuators, B Chem 15(297):126775

    Article  Google Scholar 

  38. Xu L, Pan M, Fang G, Wang S (2019) Carbon dots embedded metal-organic framework@ molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens Actuators, B Chem 1(286):321–327

    Article  Google Scholar 

  39. Yang SP, Chen SR, Liu SW, Tang XY, Qin L, Qiu GH, Chen JX, Chen WH (2015) Platforms formed from a three-dimensional Cu-based zwitterionic metal-organic framework and probe ss-DNA: selective fluorescent biosensors for human immunodeficiency virus 1 ds-DNA and Sudan virus RNA sequences. Anal Chem 87(24):12206–12214

    Article  CAS  Google Scholar 

  40. Wang XY, Yin HQ, Yin XB (2020) MOF@ COFs with strong multiemission for differentiation and ratiometric fluorescence detection. ACS Appl Mater Interfaces 12(18):20973–20981

    Article  CAS  Google Scholar 

  41. Wang N, **e M, Wang M, Li Z, Su X (2020) UiO–66–NH2 MOF-based ratiometric fluorescent probe for the detection of dopamine and reduced glutathione. Talanta 1(220):121352

    Article  Google Scholar 

  42. Cai Y, Hua Y, Yin M, Liu H, Li S, Wang F, Wang H (2020) Fabrication of test strips with gold-silver nanospheres and metal-organic frameworks: a fluorimetric method for sensing trace cysteine in hela cells. Sens Actuators, B Chem 1(302):127198

    Article  Google Scholar 

  43. Bhardwaj N, Bhardwaj SK, Mehta J, Nayak MK, Deep A (2016) Bacteriophage conjugated IRMOF-3 as a novel opto-sensor for S. arlettae. New J Chem 40(9):8068–8073

    Google Scholar 

  44. Shu Y, Chen J, Xu Z, ** D, Xu Q, Hu X (2019) Nickel metal-organic framework nanosheet/hemin composite as biomimetic peroxidase for electrocatalytic reduction of H2O2. J Electroanal Chem 15(845):137–143

    Article  Google Scholar 

  45. He L, Duan F, Song Y, Guo C, Zhao H, Tian JY, Zhang Z, Liu CS, Zhang X, Wang P, Du M (2017) 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electro-chemical and surface plasmon resonance methods. 2D Mater 4(2):025098

    Google Scholar 

  46. Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S (2018) A revival of 2D materials, phosphorene: Its application as sensors. J Ind Eng Chem 25(64):60–69

    Article  Google Scholar 

  47. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28(17):3333–3339

    Article  CAS  Google Scholar 

  48. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater 26(7):992–1005

    Article  CAS  Google Scholar 

  49. Huang J, Li Z, Mao Y, Li Z (2021) Progress and biomedical applications of MXenes. Nano Select 2(8):1480–1508

    Article  CAS  Google Scholar 

  50. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331

    Article  CAS  Google Scholar 

  51. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47(14):5109–5124

    Article  CAS  Google Scholar 

  52. Zhao J, Wen J, Bai L, **ao J, Zheng R, Shan X, Li L, Gao H, Zhang X (2019) One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans 48(38):14433–14439

    Article  CAS  Google Scholar 

  53. Wang F, Yang C, Duan C, **ao D, Tang Y, Zhu J (2014) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electro-Chem Soc 162(1):B16

    Article  Google Scholar 

  54. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 1(159):112208

    Article  Google Scholar 

  55. Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Vikartovska A, Tanvir A, Kasak P, Tkac J (2020) Ultrasensitive Ti3C2TX MXene/chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes 8(5):580

    Article  CAS  Google Scholar 

  56. Zhou S, Gu C, Li Z, Yang L, He L, Wang M, Huang X, Zhou N, Zhang Z (2019) Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl Surf Sci 31(498):143889

    Article  Google Scholar 

  57. Sang X, **e Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y, Kent PR, **ao K, Unocic RR (2016) Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10):9193–9200

    Article  CAS  Google Scholar 

  58. Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M (2020) MXene titanium carbide-based biosensor: Strong dependence of exfoliation method on performance. Anal Chem 92(3):2452–2459

    Article  CAS  Google Scholar 

  59. Ma BK, Li M, Cheong LZ, Weng XC, Shen C, Huang Q (2020) Enzyme-MXene nanosheets: fabrication and application in electro-chemical detection of H2O2. 无机材料学报 35(1)

    Google Scholar 

  60. Song M, Pang SY, Guo F, Wong MC, Hao J (2020) Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electro-chemical biosensors with ultrahigh sensitivity. Adv Sci 7(24):2001546

    Article  CAS  Google Scholar 

  61. Wu L, Lu X, Wu ZS, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 1(107):69–75

    Article  Google Scholar 

  62. Fan Y, Shi S, Ma J, Guo Y (2019) A paper-based electro-chemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron 15(135):1–7

    Article  Google Scholar 

  63. Xu Q, Xu J, Jia H, Tian Q, Liu P, Chen S, Cai Y, Lu X, Duan X, Lu L (2020) Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electro-chemical immunoassay of prostate specific antigen. J Electroanal Chem 1(860):113869

    Article  Google Scholar 

  64. Niu H, Cai S, Liu X, Huang X, Chen J, Wang S, Zhang S (2022) A novel electro-chemical sandwich-like immunosensor based on carboxyl Ti3C2Tx MXene and rhodamine B/gold/reduced graphene oxide for Listeria monocytogenes. Anal Methods 14(8):843–849

    Article  CAS  Google Scholar 

  65. Yoon J, Shin M, Lim J, Lee JY, Choi JW (2020) Recent advances in MXene nanocomposite-based biosensors. Biosensors 10(11):185

    Article  CAS  Google Scholar 

  66. Xu G, Niu Y, Yang X, ** Z, Wang Y, Xu Y, Niu H (2018) Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv Opt Mater 6(24):1800951

    Article  Google Scholar 

  67. Zhu X, Pang X, Zhang Y, Yao S (2019) Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. J Mater Chem B 7(48):7729–7735

    Article  CAS  Google Scholar 

  68. Xu Q, Ding L, Wen Y, Yang W, Zhou H, Chen X, Street J, Zhou A, Ong WJ, Li N (2018) High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J Mater Chem C 6(24):6360–6369

    Google Scholar 

  69. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90(21):12737–12744

    Article  CAS  Google Scholar 

  70. Lee JH, Choi JH, Chueng ST, Pongkulapa T, Yang L, Cho HY, Choi JW, Lee KB (2019) Nondestructive characterization of stem cell neurogenesis by a magneto-plasmonic nanomaterial-based exosomal mirna detection. ACS Nano 13(8):8793–8803

    Article  CAS  Google Scholar 

  71. Peng X, Zhang Y, Lu D, Guo Y, Guo S (2019) Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators, B Chem 1(286):222–229

    Article  Google Scholar 

  72. Zheng F, Ke W, Shi L, Liu H, Zhao Y (2019) Plasmonic Au–Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for Ochratoxin A detection. Anal Chem 91(18):11812–11820

    Article  CAS  Google Scholar 

  73. Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens Actuators, B Chem 15(263):360–368

    Article  Google Scholar 

  74. Rakhi RB, Nayak P, **a C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6(1):1

    Google Scholar 

  75. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D (2017) Electro-chemical performance of Ti3C2TxMXene in aqueous media: Towards ultrasensitive H2O2 sensing. Electrochim Acta 1(235):471–479

    Article  Google Scholar 

  76. **e H, Li P, Shao J, Huang H, Chen Y, Jiang Z, Chu PK, Yu XF (2019) Electrostatic self-assembly of Ti3C2TxMXene and gold nanorods as an efficient surface-enhanced raman scattering platform for reliable and high-sensitivity determination of organic pollutants. ACS Sensors 4(9):2303–2310

    Article  CAS  Google Scholar 

  77. Zheng J, Diao J, ** Y, Ding A, Wang B, Wu L, Weng B, Chen J (2018) An inkjet printed Ti3C2–GO electrode for the electro-chemical sensing of hydrogen peroxide. J Electro-Chem Soc 165(5):B227

    Article  CAS  Google Scholar 

  78. San Nah J, Barman SC, Zahed MA, Sharifuzzaman M, Yoon H, Park C, Yoon S, Zhang S, Park JY (2021) A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for non-invasive sweat cortisol detection. Sens Actuators, B Chem 15(329):129206

    Google Scholar 

  79. Chen L, Chen F, Liu G, Lin H, Bao Y, Han D, Wang W, Ma Y, Zhang B, Niu L (2022) Superhydrophobic functionalized Ti3C2TX MXene-based skin-attachable and wearable electro-chemical pH sensor for real-time sweat detection. Anal Chem 94(20):7319–7328

    Google Scholar 

  80. Li M, Wang L, Liu R, Li J, Zhang Q, Shi G, Li Y, Hou C, Wang H (2021) A highly integrated sensing paper for wearable electro-chemical sweat analysis. Biosens Bioelectron 15(174):112828

    Article  Google Scholar 

  81. Chen G, Wang H, Wei X, Wu Y, Gu W, Hu L, Xu D, Zhu C (2020) Efficient Z-Scheme heterostructure based on TiO2/Ti3C2Tx/Cu2O to boost photoelectro-chemical response for ultrasensitive biosensing. Sens Actuators, B Chem 1(312):127951

    Article  Google Scholar 

  82. Qiu Z, Fan D, Xue X, Zhang J, Xu J, Lyu H, Chen Y (2022) Ti3C2 MXene-anchored photoelectron-chemical detection of exosomes by in situ fabrication of CdS nanoparticles with enzyme-assisted hybridization chain reaction. RSC Adv 12(22):14260–14267

    Google Scholar 

  83. Zheng Y, Zhou Y, Cui X, Yin H, Ai S (2022) Enhanced photoactivity of CdS nanorods by MXene and ZnSnO3: application in photoelectro-chemical biosensor for the effect of environmental pollutants on DNA hydroxymethylation in wheat tissues. Mater Today Chem 1(24):100878

    Article  Google Scholar 

  84. Li M, Wang H, Wang X, Lu Q, Li H, Zhang Y, Yao S (2019) Ti3C2/Cu2O heterostructure based signal-off photoelectro-chemical sensor for high sensitivity detection of glucose. Biosens Bioelectron 1(142):111535

    Article  Google Scholar 

  85. Yao B, Zhang J, Fan Z, Ding Y, Zhou B, Yang R, Zhao J, Zhang K (2021) Rational engineering of the DNA walker amplification strategy by using a Au@ Ti3C2@ PEI-Ru (dcbpy)32+ nanocomposite biosensor for detection of the SARS-CoV-2 RdRp gene. ACS Appl Mater Interfaces 13(17):19816–19824

    Article  CAS  Google Scholar 

  86. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92(7):5546–5553

    Article  CAS  Google Scholar 

  87. Zhang K, Fan Z, Huang Y, Ding Y, **e M (2022) A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection. Talanta 1(236):122868

    Article  Google Scholar 

  88. Fang Y, Yang X, Chen T, Xu G, Liu M, Liu J, Xu Y (2018) Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens Actuators, B Chem 15(263):400–407

    Article  Google Scholar 

  89. Chen X, Sun X, Xu W, Pan G, Zhou D, Zhu J, Wang H, Bai X, Dong B, Song H (2018) Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3):1111–1118

    Article  CAS  Google Scholar 

  90. Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G (2022) Ti3C2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 1(195):113620

    Article  Google Scholar 

  91. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43(3):934–959

    Article  CAS  Google Scholar 

  92. Sharker SM (2019) Hexagonal boron nitrides (white graphene): a promising method for cancer drug delivery. Int J Nanomed 19:9983–9993

    Article  Google Scholar 

  93. Karfa P, Majhi KC, Madhuri R (2020) Synthesis of two-dimensional nanomaterials. Two-Dimens Nanostructures Biomed Technol Front Environ Sci (10):35–71

    Google Scholar 

  94. Wen W, Song Y, Yan X, Zhu C, Du D, Wang S, Asiri AM, Lin Y (2018) Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater Today 21(2):164–177

    Article  CAS  Google Scholar 

  95. Wang H, Zhao Y, **e Y, Ma X, Zhang X (2017) Recent progress in synthesis of two-dimensional hexagonal boron nitride. J Semicond 38(3):031003

    Article  Google Scholar 

  96. Zhang X, An L, Bai C, Chen L, Yu Y (2021) Hexagonal boron nitride quantum dots: properties, preparation and applications. Mater Today Chem 1(20):100425

    Article  Google Scholar 

  97. Harley-Trochimczyk A, Pham T, Chang J, Chen E, Worsley MA, Zettl A, Mickelson W, Maboudian R (2016) Platinum nanoparticle loading of boron nitride aerogel and its use as a novel material for low-power catalytic gas sensing. Adv Func Mater 26(3):433–439

    Article  CAS  Google Scholar 

  98. Lin L, Xu Y, Zhang S, Ross IM, Ong AC, Allwood DA (2013) Fabrication and luminescence of monolayered boron nitride quantum dots. Small 10(1):60–65

    Article  CAS  Google Scholar 

  99. Tian Y, Cui Q, Xu L, Jiao A, Ma H, Wang C, Zhang M, Wang X, Li S, Chen M (2021) Alloyed AuPt nanoframes loaded on h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectro-chemical biosensor for accurate monitoring glucose in human tears. Biosens Bioelectron 15(192):113490

    Article  Google Scholar 

  100. Liu B, Wang Y, Chen Y, Guo L, Wei G (2020) Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B 8(44):10065–10086

    Article  CAS  Google Scholar 

  101. Wang F, Liu Y, Zhang L, Zhang Z, Huang C, Zang D, Wang H, Ge S, Yu J (2022) Photoelectro-chemical biosensor based on CdS quantum dots anchored h-BN nanosheets and tripodal DNA walker for sensitive detection of miRNA-141. Anal Chim Acta 15(1226):340265

    Article  Google Scholar 

  102. Zhan Y, Yan J, Wu M, Guo L, Lin Z, Qiu B, Chen G, Wong KY (2017) Boron nitride nanosheets as a platform for fluorescence sensing. Talanta 1(174):365–371

    Article  Google Scholar 

  103. Zhang X, Gao Y (2020) 2D/2D h-BN/N-doped MoS2 heterostructure catalyst with enhanced peroxidase-like performance for visual colorimetric determination of H2O2. Chem Asian J 15(8):1315–1323

    Article  CAS  Google Scholar 

  104. Xu Q, Cai L, Zhao H, Tang J, Shen Y, Hu X, Zeng H (2015) Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosens Bioelectron 15(63):294–300

    Article  Google Scholar 

  105. Yang GH, Shi JJ, Wang S, **ong WW, Jiang LP, Burda C, Zhu JJ (2013) Fabrication of a boron nitride-gold nanocluster composite and its versatile application for immunoassays. Chem Commun 49(91):10757–10759

    Article  CAS  Google Scholar 

  106. Feng S, Meng J, Guo J, Chen X, Zhang G, Liu W, Liu G, Yang G, Sun H (2020) B, N dual-doped Graphene/Au@ Pt nanomaterials as sensor for determination of aflatoxin B1. Int J Electrochem Sci 1(15):7722–7732

    Article  Google Scholar 

  107. Zhang J, Lin Z, Qin Y, Li Y, Liu X, Li Q, Huang H (2019) Fabricated electro-chemical sensory platform based on the boron nitride ternary nanocomposite film electrode for paraquat detection. ACS Omega 4(19):18398–18404

    Article  CAS  Google Scholar 

  108. Zhang Q, Wang Y, Zhou Q, Chen Y, Zheng Y, Tang S, Zhao Y, Jiang L (2021) Highly efficient cataluminescence gas sensor based on nanosized h-BN for trace acetylacetone detection. Meas Sci Technol 32(9):095114

    Article  CAS  Google Scholar 

  109. Zhang Y, Wang YN, Sun XT, Chen L, Xu ZR (2017) Boron nitride nanosheet/CuS nanocomposites as mimetic peroxidase for sensitive colorimetric detection of cholesterol. Sens Actuators, B Chem 1(246):118–126

    Article  Google Scholar 

  110. Baby JN, Sriram B, Hsu YF, Wang SF, Bartholomew R, George M (2022) Rational incorporation of strontium pyrophosphate/hexagonal boron nitride composite for trace level electro-chemical sensing of dopamine. Microchem J 1(183):108067

    Article  Google Scholar 

  111. Venkatesh K, Rajakumaran R, Chen SM, Karuppasamy P, Banach A, Al-Onazi WA, Sonadevi S, Krishnan NP, Yang CC, Karuppiah C, Ramaraj SK (2022) SrMnO3/Functionalized h-BN composite modified disposable sensor for the voltammetric determination of furaltadone antibiotic drug. Catalysts 12(12):1494

    Article  CAS  Google Scholar 

  112. Sriram B, Baby JN, Hsu YF, Wang SF, George M (2021) Synergy of the LaVO4/h-BN nanocomposite: a highly active electrocatalyst for the rapid analysis of carbendazim. Inorg Chem 60(7):5271–5281

    Article  CAS  Google Scholar 

  113. Zhang Y, **a Z, Li Q, Gui G, Zhao G, Luo S, Yang M, Lin L (2018) Copper/hexagonal boron nitride nanosheet composite as an electro-chemical sensor for nitrite determination. Int J Electrochem Sci 1(13):5995–6004

    Article  Google Scholar 

  114. Ren J, Innocenzi P (2021) 2D Boron nitride heterostructures: Recent advances and future challenges. Small Struct 2(11):2100068

    Article  CAS  Google Scholar 

  115. Yue Y, Zeng L, Wang X, Su L, Sun M, Wu B, Yan S (2019) Loading of AgNPs onto the surface of boron nitride nanosheets for determination of scopoletin in Atractylodes macrocephala. Sci Rep 9(1):3864

    Article  Google Scholar 

  116. Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movaghgharnezhad S, Rajendran S, Razmjou A (2020) An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq 15(310):113185

    Article  Google Scholar 

  117. Pumera M (2017) Phosphorene and black phosphorus for sensing and biosensing. TrAC, Trends Anal Chem 1(93):1–6

    Article  Google Scholar 

  118. Ge X, **a Z, Guo S (2019) Recent advances on black phosphorus for biomedicine and biosensing. Adv Func Mater 29(29):1900318

    Article  Google Scholar 

  119. Wang L, Sofer Z, Pumera M (2015) Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. Chem Electro Chem 2(3):324–327

    CAS  Google Scholar 

  120. Yang X, Liu G, Shi Y, Huang W, Shao J, Dong X (2018) Nano-black phosphorus for combined cancer phototherapy: Recent advances and prospects. Nanotechnology 29(22):222001

    Article  Google Scholar 

  121. Liao G, Gong Y, Zhang L, Gao H, Yang GJ, Fang B (2019) Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci 12(7):2080–2147

    Article  CAS  Google Scholar 

  122. Wang AJ, Li H, Huang H, Qian ZS, Feng JJ (2016) Fluorescent graphene-like carbon nitrides: Synthesis, properties and applications. J Mater Chem C 4(35):8146–8160

    Article  CAS  Google Scholar 

  123. Liao X, Wang Q, Ju H (2014) Simultaneous sensing of intracellular microRNAs with a multi-functionalized carbon nitride nanosheet probe. Chem Commun 50(88):13604–13607

    Article  CAS  Google Scholar 

  124. Liu Y, Yan K, Zhang J (2016) Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectro-chemical aptasensing of tetracycline. ACS Appl Mater Interfaces 8(42):28255–28264

    Article  CAS  Google Scholar 

  125. Lu Q, Zhang J, Liu X, Wu Y, Yuan R, Chen S (2014) Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@ graphitic carbon nitride polymer nanosheet-polyaniline hybrids. Analyst 139(24):6556–6562

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Doon University, Dehradun for their unwavering support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riyal, I., Dimri, S., Nautiyal, S., Sharma, H., Dwivedi, C. (2024). The Evolution and Emergence of 2D Nanomaterial Based Electro-Chemical and Fluorescent Biosensors. In: Rajput, V.S., Bhinder, J. (eds) Advanced Materials for Biomedical Applications. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6286-0_7

Download citation

Publish with us

Policies and ethics

Navigation