Recent Advances and Perspectives on Polymer-Based Materials for Biomedical Applications

  • Chapter
  • First Online:
Advanced Materials for Biomedical Applications

Abstract

Polymer-based materials are being extensively used in several biomedical applications. They offer better biomechanical properties in comparison to conventionally used material, which renders them with better biocompatibility. Besides, they are easy to use and have simple fabrication procedure, making them cost-effective. In this chapter, we have discussed several applications of polymer-based materials in different biomedical domains. Particularly, their applicability in soft and hard tissue repairing applications has been discussed in detail. Besides catering to biomedical problems, they are also an integral component of biomedical instruments. Despite having such a wide array of applications, this class of materials is not devoid of drawbacks. This is primarily due to complications associated with the biochemical architecture of the human body. Having said that, there is no doubt that overcoming these limitations will render these materials an excellent substrate for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PU:

Polyurethane

PVC:

Polyvinyl chloride

LDPE:

Low-density polyethylene

PTFE:

Polytetrafluoroethylene

PET:

Polyethylene terephthalate

PLLA:

Poly (L-lactide)

PE:

Polyethylene

UHMWPE:

Ultra high molecular weight polyethylene

PLA:

Polylactic acid

PMA:

Poly (methyl acrylate)

PELA:

Poly ethylene glycol lactic acid

CF:

Carbon fiber

PA:

Polyamide

PMMA:

Polymethyl methacrylate

PS:

Polystyrene

PEEK:

Polyether ether ketone

GF:

Glass fiber

TKR:

Total knee replacement

THR:

Total hip replacement

BIS-GMA:

Bisphenol A-glycidyl methacrylate

CT:

Computed tomography

MRI:

Magnetic resonance imaging

IoT:

Internet of Things

References

  1. De las Heras Alarcón C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    Google Scholar 

  2. Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394

    Article  CAS  Google Scholar 

  3. Reis RL, Neves NM, Mano JF, Gomes ME, Marques AP, Azevedo HS (2008) Natural-based polymers for biomedical applications. Elsevier

    Google Scholar 

  4. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3):1215–1242

    Article  CAS  Google Scholar 

  5. Kulshrestha AS, Mahapatro A, Polymers for biomedical applications

    Google Scholar 

  6. Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27(3):498–526

    Article  CAS  Google Scholar 

  7. Guo B, Glavas L, Albertsson AC (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286

    Article  CAS  Google Scholar 

  8. Yan Y, Zhang J, Ren L, Tang C (2016) Metal-containing and related polymers for biomedical applications. Chem Soc Rev 45(19):5232–5263

    Article  CAS  Google Scholar 

  9. Stiriba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41(8):1329–1334

    Article  CAS  Google Scholar 

  10. Kohnen W, Jansen B (1995) Polymer materials for the prevention of catheter-related infections. Zentralblatt für Bakteriologie 283(2):175–186

    Article  CAS  Google Scholar 

  11. Lemos PA, Farooq V, Takimura CK, Gutierrez PS, Virmani R, Kolodgie F, Christians U, Kharlamov A, Doshi M, Sojitra P, van Beusekom HM (2013) Emerging technologies: polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter. EuroIntervention 9(1):148–156

    Article  Google Scholar 

  12. Shoa T, Madden JD, Munce NR, Yang V (2010) Analytical modeling of a conducting polymer-driven catheter. Polym Int 59(3):343–351

    Article  CAS  Google Scholar 

  13. Dayyoub E, Frant M, Pinnapireddy SR, Liefeith K, Bakowsky U (2017) Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm 531(1):205–214

    Article  CAS  Google Scholar 

  14. Mazzoldi A, De Rossi D (2000) Conductive-polymer-based structures for a steerable catheter. In: Smart structures and materials 2000: electroactive polymer actuators and devices (EAPAD), vol 3987. SPIE, pp 273–280

    Google Scholar 

  15. He X, Ou D, Wu S, Luo Y, Ma Y, Sun J (2022) A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv Compos Hybrid Mater 5(1):21–38

    Article  CAS  Google Scholar 

  16. Gallot-Lavallée O, Teyssedre G, Laurent C, Rowe S (2005) Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material. J Phys D Appl Phys 38(12):2017

    Article  Google Scholar 

  17. Hooper JB, Schweizer KS (2007) Real space structure and scattering patterns of model polymer nanocomposites. Macromolecules 40(19):6998–7008

    Article  CAS  Google Scholar 

  18. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohyd Polym 15(236):116025

    Article  Google Scholar 

  19. Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732

    Article  CAS  Google Scholar 

  20. Nath A, Kanjilal T, Bhattacharjee C (2016) Application of bioactive composite green polymer for the development of artificial organs. In: New polymeric composite materials; materials research forum LLC. Millersville, PA, USA

    Google Scholar 

  21. Olsen L, Bowald S, Busch C, Carlsten J, Eriksson I (1992) Urethral reconstruction with a new synthetic absorbable device: An experimental study. Scand J Urol Nephrol 26(4):323–326

    Article  CAS  Google Scholar 

  22. Park CJ, Kim HW, Jeong S, Seo S, Park Y, Moon HS, Lee JH (2015) Anti-reflux ureteral stent with polymeric flap valve using three-dimensional printing: an in vitro study. J Endourol 29(8):933–938

    Article  Google Scholar 

  23. Sahoo S, Cho-Hong JG, Siew-Lok T (2007) Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed Mater 2(3):169

    Article  CAS  Google Scholar 

  24. Silva M, Ferreira FN, Alves NM, Paiva MC (2020) Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology 18:1–33

    Article  Google Scholar 

  25. Aragona J, Parsons JR, Alexander H, Weiss AB (1981) Soft tissue attachment of a filamentous carbon-absorbable polymer tendon and ligament replacement. Clin Orthop Relat Res (1976–2007) 160:268–278

    Google Scholar 

  26. Majima T, Irie T, Sawaguchi N, Funakoshi T, Iwasaki N, Harada K, Minami A, Nishimura SI (2007) Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc Inst Mech Eng [H] 221(5):537–546

    Article  CAS  Google Scholar 

  27. Majima T, Funakosi T, Iwasaki N, Yamane ST, Harada K, Nonaka S, Minami A, Nishimura SI (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 10:302–307

    Article  CAS  Google Scholar 

  28. Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev 22(1):68–100

    Article  CAS  Google Scholar 

  29. de Valence S, Tille JC, Chaabane C, Gurny R, Bochaton-Piallat ML, Walpoth BH, Möller M (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86

    Article  Google Scholar 

  30. Han DK, Park K, Park KD, Ahn KD, Kim YH (2006) In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Artif Organs 30(12):955–959

    Article  CAS  Google Scholar 

  31. Tang C, Kligman F, Larsen CC, Kottke-Marchant K, Marchant RE (2009) Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification. J Biomed Mater Res Part A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 88(2):348–358

    Article  Google Scholar 

  32. Leal BB, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P (2021) Vascular tissue engineering: polymers and methodologies for small caliber vascular grafts. Front Cardiovasc Med 11(7):592361

    Article  Google Scholar 

  33. He W, Yong T, Teo WE, Ma Z, Ramakrishna S (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11(9–10):1574–1588

    Article  CAS  Google Scholar 

  34. Khan YM, Katti DS, Laurencin CT (2004) Novel polymer-synthesized ceramic composite–based system for bone repair: an in vitro evaluation. J Biomed Mater Res Part A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 69(4):728–737

    Article  Google Scholar 

  35. Ambrosio AM, Sahota JS, Khan Y, Laurencin CT (2001) A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 58(3):295–301

    Google Scholar 

  36. Devin JE, Attawia MA, Laurencin CT (1996) Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polym Ed 7(8):661–669

    Article  CAS  Google Scholar 

  37. Li F, Li S, Liu Y, Zhang Z, Li Z (2022) Current advances in the roles of doped bioactive metal in biodegradable polymer composite scaffolds for bone repair: a mini review. Adv Eng Mater 24(8):2101510

    Article  CAS  Google Scholar 

  38. Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT, Qin L, Lai Y, Alini M, De Bruijn JD, Yuan H (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 1(54):386–398

    Article  Google Scholar 

  39. Wan M, Liu S, Huang D, Qu Y, Hu Y, Su Q, Zheng W, Dong X, Zhang H, Wei Y, Zhou W (2021) Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by 3D printing technology. J Appl Polym Sci 138(13):50114

    Article  CAS  Google Scholar 

  40. Borden M, Attawia M, Khan Y, Laurencin CT (2002) Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials 23(2):551–559

    Article  CAS  Google Scholar 

  41. Pawelec KM, White AA, Best SM (2019) Properties and characterization of bone repair materials. In: Bone repair biomaterials. Woodhead Publishing, pp 65–102

    Google Scholar 

  42. Mulchandani N, Prasad A, Katiyar V (2019) Resorbable polymers in bone repair and regeneration. In: Materials for biomedical engineering. Elsevier, pp 87–125

    Google Scholar 

  43. Deng M, G Kumbar S, W-H Lo K, D Ulery B, T Laurencin C (2011) Novel polymer-ceramics for bone repair and regeneration. Recent Pat Biomed Eng (Discontinued) 4(3):168–184

    Google Scholar 

  44. Friedman JA, Windebank AJ, Moore MJ, Spinner RJ, Currier BL, Yaszemski MJ (2002) Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery 51(3):742–752

    Article  Google Scholar 

  45. Luo Y, Xue F, Liu K, Li B, Fu C, Ding J (2021) Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Mater Des 1(201):109484

    Article  Google Scholar 

  46. Shin JE, Jung K, Kim M, Hwang K, Lee H, Kim IS, Lee BH, Lee IS, Park KI (2018) Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med 50(4):1–8

    Article  Google Scholar 

  47. Cook RB, Bolland BJ, Wharton JA, Tilley S, Latham JM, Wood RJ (2013) Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacements. J Arthroplasty 28(8):1430–1436

    Article  Google Scholar 

  48. Vu NB, Truong NH, Dang LT, Phi LT, Ho NT, Pham TN, Phan TP, Pham PV (2016) In vitro and in vivo biocompatibility of Ti–6Al–4V titanium alloy and UHMWPE polymer for total hip replacement. Biomed Res Therapy 3:1–1

    Article  Google Scholar 

  49. Sutton N, Schmitz ND, Johnston SS (2018) Economic and clinical comparison of 2-octyl cyanoacrylate/polymer mesh tape with skin staples in total knee replacement. J Wound Care 27(Sup4):S12-22

    Article  Google Scholar 

  50. Fong H (2004) Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45(7):2427–2432

    Article  CAS  Google Scholar 

  51. Floyd CJ, Dickens SH (2006) Network structure of Bis-GMA-and UDMA-based resin systems. Dent Mater 22(12):1143–1149

    Article  CAS  Google Scholar 

  52. Kumar S, Bhowmik S (2022) Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: a review on fair inclusion in amputees. Iran Polym J 31(10):1297–1319

    Article  CAS  Google Scholar 

  53. Culmone C, Smit G, Breedveld P (2019) Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf 1(27):461–473

    Google Scholar 

  54. Stefan-van Staden RI (2022) Perspective—challenges in biomedical analysis: from classical sensors to stochastic sensors. ECS Sens Plus 1(1):011603

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UGC Junior Research Fellowship (JRF) (221610019739) and INDO-US 21st century knowledge initiative project [F. No. 194-2/2016(IC)]. We gratefully acknowledge the facilities and assistance provided by the Sophisticated Analytical Instrumentation Facility (SAIF) and the Department of Chemistry, Panjab University, Chandigarh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganga Ram Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negi, A., Chauhan, A., Kashyap, R., Sharma, R.K., Chaudhary, G.R. (2024). Recent Advances and Perspectives on Polymer-Based Materials for Biomedical Applications. In: Rajput, V.S., Bhinder, J. (eds) Advanced Materials for Biomedical Applications. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6286-0_4

Download citation

Publish with us

Policies and ethics

Navigation