Probability Density Distribution of Size and Convective Heat Transfer Mechanism of Nanofluid Droplets

  • Chapter
  • First Online:
Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant
  • 65 Accesses

Abstract

As everyone knows, the thermal conductivity of solid materials is several orders of magnitudes higher than that of fluids under room temperature. For example, the thermal conductivity of copper is 700 times higher than that of water and the thermal conductivity of carbon nanotube is 5000 times higher than that of water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., & Yang, M. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29(4), 1084–1095.

    Article  Google Scholar 

  2. Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. Argonne National Lab., IL (United States), 1995.

    Google Scholar 

  3. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q., & Cao, H. (2018). Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. Journal of cleaner production, 193, 236–248.

    Article  CAS  Google Scholar 

  4. GailDuursma, KhellilSefiane, AidenKennedy. Experimental Studies of Nanofluid Droplets in Spray Cooling[J]. Heat Transfer Engineering, 2009, 30 (13): 1108–1120

    Google Scholar 

  5. Yanbin Zhang, Hao Nan Li, Changhe Li, Chuanzhen Huang, Hafiz Muhammad Ali, Xuefeng Xu, Cong Mao, Wenfeng Ding, **n Cui, Min Yang, Tianbiao Yu, Muhammad Jamil, Munish Kumar Gupta, Dongzhou Jia, Zafar Said (2021). Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms. Friction. 10(6): 803–841.

    Article  Google Scholar 

  6. X. Cui, C.H. Li, W.F. Ding, Y. Chen, C. Mao, X.F. Xu, B. Liu, D.Z. Wang, H.N. Li, Y.B. Zhang, Z. Said, S. Debnath, M. Jamil, H. Muhammad Ali, S. Sharma, Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application, Chinese Journal of Aeronautics, 2022, 35(11):85–112. doi: https://doi.org/10.1016/j.cja.2021.08.011.

  7. Zhou H. Research on temperature filed of surface grinding applied nanofluid for minimum quantity lubricant[D]. Changsha: Changsha University of Science & Technology, 2013.

    Google Scholar 

  8. Mao C, Zou H, Huang Y, et al. Analysis of heat transfer coefficient on workpiece surface during minimum quantity lubricant grinding[J]. International Journal of Advanced Manufacturing Technology, 2013, 66 (1–4): 363–370.

    Article  Google Scholar 

  9. Mao C, Zou H, Huang X, et al. The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication[J]. International Journal of Advanced Manufacturing Technology, 2013, 64 (9–12): 1791–1799.

    Article  Google Scholar 

  10. Mao C, Tang X, Zou H, et al. Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding[J]. International Journal of Advanced Manufacturing Technology, 2012, 59 (1–4): 93–100.

    Article  Google Scholar 

  11. Liu Zhanrui. Grinding of the Surface Integrity in Lubrication and the Evaluation theory by Nanofluids jet the Research of Heat Transfer, Qingdao university of technology, China, 2010.

    Google Scholar 

  12. Zhang D. The mechanism of convective heat transfer and experimental investigation in grinding nickel-base superalloy by nanoparticle jet MQL[D]. Qingdao: Qingdao University of Technology, 2014.

    Google Scholar 

  13. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M., Zhang, N., Qu, Q., Han, Z., & Sun, K. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1–11.

    Article  CAS  Google Scholar 

  14. Liu GT, Li CH, Zhang YB, et al. Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis[J]. Materials and Manufacturing Processes, 2017, 33(9): 950–963.

    Google Scholar 

  15. Zhang JC, Li CH, Zhang YB, et al. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1–4): 209–228.

    Google Scholar 

  16. Lee P H, Lee S W, Lim S H, et al. A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL)[J]. International journal of precision engineering and manufacturing, 2015, 16(9): 1899–1909.

    Google Scholar 

  17. Sienski K, Eden R, Schaefer D. 3-D electronic interconnect packaging[C]. IEEE Aerospace Applications Conference, 1996.

    Google Scholar 

  18. Shen B. Minimum Quantity Lubrication Grinding Using Nanofluids[D]. The University of Michigan, Michigan, 2008.

    Google Scholar 

  19. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., Hou, Y., & Mao, C. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487–499.

    Google Scholar 

  20. Jia D Z, Li C H, Liu J H, Zhang Y B, Yang M, Gao T, Said Z, Sharma S. Prediction model of volume average diameter and analysis of atomization characteristics in electrostatic atomization minimum quantity lubrication. Friction (2023) DOI https://doi.org/10.1007/s40544-022-0734-2.

    Article  Google Scholar 

  21. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R., & Wang, J. (2017). Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 122, 55–65.

    Article  Google Scholar 

  22. Mudawar I, Estes K A. Optimization and Predicting CHF in Spray Cooling of a Square Surface[J]. Journal of Heat Transfer, 1996, 118: 672–680.

    Google Scholar 

  23. Yin, Han Z. The simulation and experimental investigation in field of MQL grinding zone with nanoparticles jet [D]. Qingdao: Qingdao University of Technology, 2012

    Google Scholar 

  24. Mingzheng Liu, Changhe Li, Yanbin Zhang, Qinglong An, Min Yang, Teng Gao, Cong Mao, Bo Liu, Huajun Cao, Xuefeng Xu, Zafar Said, Sujan Debnath, Muhammad Jamil, Hafz Muhammad Ali, Shubham Sharma. Cryogenic minimum quantity lubrication machining: From mechanism to application. Frontiers of Mechanical Engineering, 2021, 16(4): 649–697.

    Google Scholar 

  25. Silk E A. Investigation of enhanced surface spray cooling[D]. University of Maryland, Maryland, 2006.

    Google Scholar 

  26. Hsieh C C. Two-phase Transport Phenomena in Microfluidic Devices[D]. Carnegie Mellon University, Pennsylvania, 2003.

    Google Scholar 

  27. Li B Q, Cader T, Schwarzkopf J, et al. Spray angle effect during spray cooling of microelectronics: experimental measurements and comparison with inverse calculations[J]. Applied Thermal Engineering, 2006, 26 (16): 1788–1795.

    Google Scholar 

  28. Wenhao Xu, Changhe Li, Yanbin Zhang, Hafiz Muhammad Ali, Shubham Sharma, Runze Li, Min Yang, Teng Gao, Mingzheng Liu, **aoming Wang, Zafar Said, **n Liu, Zongming Zou. 2022. Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int. J. Extrem. Manuf.4 042003 (2022). https://doi.org/10.1088/2631-7990/ac9652.

  29. Levy N, Amara S, Champoussin J C. Simulation of a diesel jet assumed fully atomized at the nozzle exit[J]. SAE, 1998, 107 (3): 1642–1653.

    Google Scholar 

  30. **aotian Zhang, Changhe Li, Zongming Zhou, Bo Liu, Yanbin Zhang, Min Yang, Teng Gao, Mingzheng Liu, Naiqing Zhang, Zafar Said, Shubham Sharma, and Hafz Muhammad Ali. Vegetable Oil-Based Nanolubricants in Machining: From Physicochemical Properties to Application. Chinese Journal of Mechanical Engineering (2023) 36:76.

    Google Scholar 

  31. Maruda R W, Krolczyk G M, Feldshtein E, et al. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL)[J]. International Journal of Machine Tools & Manufacture, 2016, 100: 81–92.

    Google Scholar 

  32. Yang M, Li C, Luo L, et al. Predictive Model of Convective Heat Transfer Coefficient in Bone Micro-Grinding Using Nanofluid Aerosol Cooling. International Communications in Heat and Mass Transfer 2021, 125, 105317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhe Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C. (2024). Probability Density Distribution of Size and Convective Heat Transfer Mechanism of Nanofluid Droplets. In: Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant. Springer, Singapore. https://doi.org/10.1007/978-981-99-6265-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6265-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6264-8

  • Online ISBN: 978-981-99-6265-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation