Nanomaterials for Precision Medicine

  • Chapter
  • First Online:
Integrated Nanomaterials and their Applications
  • 225 Accesses

Abstract

Precision medicine is characterized as the personalization of illness management with an emphasis on the genetic, environmental, and lifestyle characteristics of specific individuals, including customized medical choices and interventions. This approach involves a number of steps, including the collection and analysis of a large amount of data, selection of the best and most specific medication dose for each patient, and development of focused and reliable analytical tools for the tracking of clinical, genetic, and environmental variables. Even at the molecular level, very accurate diagnosis and therapy are now possible because of recent advancements in medical research. As a result, a brand-new subspecialty of “medicine” called “precision” has emerged, with unique clinical ramifications and challenges that can be effectively addressed by recently discovered nanomaterials. The advancement is demonstrated by the omics-based biomarker discovery and the pharmaco-omics-based medication development programs. In the realm of oncology, precision medicine has proven most beneficial in the formulation of diverse treatment protocols. The COVID-19 pandemic has demonstrated the best application of precision medicine through the use of numerous biomarkers, including IL-6 and c-reactive protein, in the assessment of illness severity, the development of various therapeutics, and the evaluation of vaccination efficacy. Additionally, the care of infectious diseases, chronic illnesses like asthma, connective tissue diseases, cardiovascular diseases, diabetes, and obesity is finding a role for precision medicine. There are still several obstacles standing in the way of precision medicine’s future, including the associated costs, ethical considerations, the security of Big Data, the fusion of many platforms to combine data, and the lack of qualified personnel to manage the data and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calabretta MM, Zangheri M, Lopreside A, Marchegiani E, Montali L, Simoni P, Roda A (2020) Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst 145(8):2841–2853

    Article  CAS  PubMed  Google Scholar 

  2. Thakur P, Thakur A (2022) Introduction to nanotechnology. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_1

  3. Naithani N, Atal AT, Tilak T, Vasudevan B, Misra P, Sinha S (2021) Precision medicine: uses and challenges. Med J Armed Forces India 77(3):258–265

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M (2016) Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. Am J Nucl Med Mol Imaging 6(6):310–327. PMID: 28078184; PMCID: PMC5218860

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmed MU, Saaem I, Wu PC, Brown AS (2014) Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 34(2):180–196

    Article  PubMed  Google Scholar 

  6. Rebelo R, Barbosa AM, Correlo VM, Reis RL (2021) An outlook on implantable biosensors for personalized medicine. Engineering 7(12):1696–1699

    Article  Google Scholar 

  7. Rodrigues D, Barbosa AM, Rebelo R, Lee SJ, Reis RL, Correlo VM (2020) Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors 10(7):79

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson KP, Wei WI, Weeraratne D, Frisse ME, Misulis KE, Rhee KY, Zhao J, Snowdon JL (2021) Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 14(1):86–93

    Article  PubMed  Google Scholar 

  9. Shakeel A, Singh A, Das S, Suhag D, Sharma AK, Rajput SK, Mukherjee M (2017) Synthesis and morphological insight of new biocompatible smart hydrogels. J Polym Res 24:1–10

    Article  CAS  Google Scholar 

  10. Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Mukherjee M (2015) Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 5(66):53963–53972

    Article  CAS  Google Scholar 

  11. Hodson R (2016) Precision medicine. Nature 537(7619):S49

    Article  CAS  PubMed  Google Scholar 

  12. De Maria Marchiano R, Di Sante G, Piro G, Carbone C, Tortora G, Boldrini L, Pietragalla A, Daniele G, Tredicine M, Cesario A, Valentini V, Gallo D, Babini G, D’Oria M, Scambia G (2021) Translational research in the era of precision medicine: where we are and where we will go. J Pers Med 11(3):216

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ghosh D, Poisson LM (2009) “Omics” data and levels of evidence for biomarker discovery. Genomics 93(1):13–16

    Article  CAS  PubMed  Google Scholar 

  14. Beltrán-García J, Osca-Verdegal R, Mena-Mollá S, García-Giménez JL (2019) Epigenetic IVD tests for personalized precision medicine in cancer. Front Genet 10:621

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Chan DW (2010) The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidemiol Biomark Prev 19(12):2995–2999

    Article  CAS  Google Scholar 

  16. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DP, Heist RS, Solomon B, Stubbs H, Admane S, McDermott MW, Settleman J, Kobayashi S, Mark EJ, Rodig SJ, Chirieac LR, Kwak EL, Lynch TJ, Iafrate AJ (2009) Clinical features and outcome of patients with non–small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kazandjian D, Gong Y, Keegan P, Pazdur R, Blumenthal GM (2019) Prognostic value of the lung immune prognostic index for patients treated for metastatic non–small cell lung cancer. JAMA Oncol 5(10):1481

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang T, Rivera F, Couture F, Sirzén F, Cassidy J (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019

    Article  CAS  PubMed  Google Scholar 

  19. Escudier B, Bellmunt J, Negrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S, Sneller V (2010) Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol 28(13):2144–2150

    Article  CAS  PubMed  Google Scholar 

  20. Grávalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19(9):1523–1529

    Article  PubMed  Google Scholar 

  21. Schuell B, Gruenberger T, Scheithauer W, Zielinski CC, Wrba F (2006) HER2/neu protein expression in colorectal cancer. BMC Cancer 6(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang LL, Shi Y (2020) Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J Hematol Oncol 13(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meyers DE, Banerji S (2020) Biomarkers of immune checkpoint inhibitor efficacy in cancer. Curr Oncol 27(12):106–114

    Article  Google Scholar 

  24. Ahmad A, Uddin S, Steinhoff M (2020) CAR-T cell therapies: an overview of clinical studies supporting their approved use against acute lymphoblastic leukemia and large B-cell lymphomas. Int J Mol Sci 21(11):3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuruvilla M, Lee FC, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56(2):219–233

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gloyn AL, Drucker DJ (2018) Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol 6(11):891–900

    Article  PubMed  Google Scholar 

  27. Barturen G, Babaei S, Català-Moll F, Martínez-Bueno M, Makowska Z, Martorell-Marugán J, Carmona-Sáez P, Toro-Domínguez D, Carnero-Montoro E, Teruel M, Kerick M, Acosta-Herrera M, Lann LL, Jamin C, Rodríguez-Ubreva J, Garcia-Gomez A, Kageyama J, Buttgereit A, Hayat S et al (2021) Integrative analysis reveals a molecular stratification of systemic autoimmune diseases. Arthr Rheumatol 73(6):1073–1085

    Article  CAS  Google Scholar 

  28. Schuetz P, Aujesky D, Müller CP, Müller B (2015) Biomarker-guided personalised emergency medicine for all – hope for another hype? Schweizerische Medizinische Wochenschrift

    Book  Google Scholar 

  29. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan P, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh W, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358(10):991–998

    Article  CAS  PubMed  Google Scholar 

  30. Saunders C, Miller NR, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson M, Krivohlavek LA, Fellis J, Humphray S, Saffrey P, Kingsbury Z, Weir J, Betley J, Grocock RJ, Margulies EH, Farrow EG, Artman M et al (2012) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 4(154):154ra135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P, Manco M, Wang L, Ammann KR, Jang KL, Won P, Han S, Ghaffari R, Paik U, Slepian MJ et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8(366):366ra165

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao W, Emaminejad S, Nyein H et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morash M, Mitchell H, Beltran H, Elemento O, Pathak J (2018) The role of next-generation sequencing in precision medicine: a review of outcomes in oncology. J Pers Med 8(3):30

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37

    Article  CAS  PubMed  Google Scholar 

  35. Sakamoto J, Van De Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu Y, Ranganathan SI, De Rosa E, Martinez JO, Smid C, Buchanan R, Lee SJ, Srinivasan S, Landry MJ, Meyn A, Tasciotti E et al (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62(2):57–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kala D, Gupta S, Kaushal A (2022) Nanotechnology in healthcare. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore

    Google Scholar 

  37. Culver HR, Clegg J, Peppas NA (2017) Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res 50(2):170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen U, Demetri GD, Nathenson MJ, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik CS, Deeken JF et al (2018) Efficacy of Larotrectinib inTRKFusion–positive cancers in adults and children. N Engl J Med 378(8):731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwaederle M, Parker BA, Schwab R, Daniels GA, Piccioni D, Kesari S, Helsten T, Bazhenova L, Romero J, Fanta PT, Lippman SM, Kurzrock R (2016) Precision oncology: the UC San Diego Moores cancer center PREDICT experience. Mol Cancer Ther 15(4):743–752

    Article  CAS  PubMed  Google Scholar 

  40. Sahin, U., Derhovanessian, E., Miller, M., Kloke, B., Simon, P., Löwer, M., Bukur, V., Tadmor, A. D., Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A., Buck, J., Heesch, S., Schreeb, K. H., Müller, F., . . . Türeci, Ö. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222–226

    Article  CAS  PubMed  Google Scholar 

  41. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma AM, Giobbie-Hurder A, Peter L, Chen CH, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, G**i E, Stevens JR, Lane WS et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sicklick JK, Kato S, Okamura R, Schwaederle M, Hahn SK, Williams C, De P, Krie A, Piccioni D, Miller VA, Ross JS, Benson AF, Webster J, Stephens PJ, Lee JSH, Fanta PT, Lippman SM, Leyland-Jones B, Kurzrock R (2019) Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med 25(5):744–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwaederle M, Zhao M, Lee JSH, Eggermont AM, Schilsky RL, Mendelsohn J, Lazar V, Kurzrock R (2015) Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol 33(32):3817–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR Mutation and resistance of non–small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792

    Article  CAS  PubMed  Google Scholar 

  45. Napolitano A, Vincenzi B (2019) Secondary KIT mutations: the GIST of drug resistance and sensitivity. Br J Cancer 120(6):577–578

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murthy V, Krumholz HM, Gross CP (2004) Participation in cancer clinical trials. JAMA 291(22):2720

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhigyan Satyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satyam, A., Suhag, D. (2023). Nanomaterials for Precision Medicine. In: Suhag, D., Thakur, A., Thakur, P. (eds) Integrated Nanomaterials and their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6105-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6105-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6104-7

  • Online ISBN: 978-981-99-6105-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation