Environmental Impact of Biobased Materials

  • Chapter
  • First Online:
Biobased Packaging Materials

Abstract

The materials used to contribute to the development and progress of human life have been used directly, and naturally without any processing in the early ages, but with the increase in human needs in parallel with technological developments, they have started to be processed in accordance with the purpose. Based on this, climate change and environmental pollution, which are the biggest problems of our age, and concerns about the safety of industrial raw materials have enabled the biodegradable and sustainable materials. The advancement of biodegradable biobased plastics with excellent properties is of great interest in last years. In this chapter, the main properties and advantages of the most widely investigated biodegradable biobased plastics (BBPs) in food packaging applications and their environmental impacts are overviewed. Special attention is given to raw materials, energy requirements, and scalability used to produce BBPs for food packaging applications. Different bionanocomposites prepared with incorporation of nanofillers are also explored. This part is constructed on current studies of overview of BBPs about their use as food packaging material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdorreza MN, Cheng L, Karim A (2011) Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocoll 25(1):56–60

    Article  Google Scholar 

  • Abdou ES, Nagy KS, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99(5):1359–1367

    Article  PubMed  Google Scholar 

  • Ahmad SI, Ahmad R, Khan MS, Kant R, Shahid S, Gautam L et al (2020) Chitin and its derivatives: structural properties and biomedical applications. Int J Biol Macromol 164:526–539. https://doi.org/10.1016/j.ijbiomac.2020.07.098

    Article  PubMed  Google Scholar 

  • Ahmed J, Mulla M, Arfat YA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148

    Article  Google Scholar 

  • Alexandri M, Blanco-Catalá J, Schneider R, Turon X, Venus J (2020) High L(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresour Technol 316:123949. https://doi.org/10.1016/j.biortech.2020.123949

    Article  PubMed  Google Scholar 

  • Anju A, Zuber M, Mahmood Z, Noreen A, Naveed A, Tabasum S (2016) Microbial production of polyhydroxyalkanoates and its copolymers. Int J Biol Macromol 89:161–174

    Article  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  PubMed  Google Scholar 

  • Appendini P, Hotchkiss J (2002) Innovative Food Sci 3(2):113–126

    Google Scholar 

  • Arboleda GA, Montilla CE, Villada HS, Varona GA (2015) Obtaining a flexible film elaborated from cassava thermoplastic starch and polylactic acid. Int J Polym Sci 2015:627268

    Article  Google Scholar 

  • Arikan EB, Ozsoy HD (2015) A review: investigation of bioplastics. J Civil Eng Archit 9(2):188–192

    Google Scholar 

  • Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: part 1. Carbohydr Polym 36(2):89–104. https://doi.org/10.1016/S0144-8617(98)00016-2

    Article  Google Scholar 

  • Asadollahzadeh M, Mahboubi A, Taherzadeh MJ, Åkesson D, Lennartsson PR (2022) Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14(9):1738

    Article  PubMed  PubMed Central  Google Scholar 

  • Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly (lactide) films. J Plastic Film Sheeting 19(2):123–135

    Article  Google Scholar 

  • Auras RA, Lim L-T, Selke SE, Tsuji H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, NJ

    Google Scholar 

  • Baumann H, Tillman A-M (2004) The hitch hiker’s guide to LCA

    Google Scholar 

  • Benítez JJ, Ramírez-Pozo MC, Durán-Barrantes MM, Heredia A, Tedeschi G, Ceseracciu L et al (2023) Bio-based lacquers from industrially processed tomato pomace for sustainable metal food packaging. J Clean Prod 386:135836. https://doi.org/10.1016/j.jclepro.2022.135836

    Article  Google Scholar 

  • Bodnar M, Hartmann JF, Borbely J (2006) Synthesis and study of cross-linked chitosan-N-poly (ethylene glycol) nanoparticles. Biomacromolecules 7(11):3030–3036

    Article  PubMed  Google Scholar 

  • Bos HL, Meesters KP, Conijn SG, Corré WJ, Patel MK (2016) Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use. Ind Crop Prod 84:366–374

    Article  Google Scholar 

  • Braconnot H (1881) Sur la nature des champibnons. Ann Chim 79:265–304

    Google Scholar 

  • Brugnerotto J, Desbrières J, Roberts G, Rinaudo MJP (2001a) Characterization of chitosan by steric exclusion chromatography. Polymer 42(25):09921–09927

    Article  Google Scholar 

  • Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001b) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8):3569–3580

    Article  Google Scholar 

  • Cai Z, Čadek D, Šmejkalová P, Kadeřábková A, Nová M, Kuta A (2021) The modification of properties of thermoplastic starch materials: combining potato starch with natural rubber and epoxidized natural rubber. Polym Int 26:101912

    Google Scholar 

  • Canner C (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizers, and storage. Food Sci 63:1049–1053

    Article  Google Scholar 

  • Cardoso LOB, Karolski B, Gracioso LH, do Nascimento CAO, Perpetuo EA (2020) Increased P3HB accumulation capacity of methylorubrum sp. in response to discontinuous methanol addition. Appl Biochem Biotechnol 192(3):846–860. https://doi.org/10.1007/s12010-020-03369-9

    Article  PubMed  Google Scholar 

  • Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Thermoplastic starch/natural rubber blends. Carbohydr Polym 53(1):95–99

    Article  Google Scholar 

  • Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685. https://doi.org/10.1016/j.progpolymsci.2011.10.001

    Article  Google Scholar 

  • Çelebi H, Dehmen SJ (2013) Synthesis and characterization of starch/polycaprolactone based biodegradable nanocomposites. Sigma J Eng Nat Sci 31(1):53–62

    Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  Google Scholar 

  • Chang YC, Chen DH (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macro Mol Biosci 5(3):254–261

    Article  Google Scholar 

  • Changwichan K, Silalertruksa T, Gheewala SH (2018) Eco-efficiency assessment of bioplastics production systems and end-of-life options. Sustainability 10(4):952

    Article  Google Scholar 

  • Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49(7):1860–1870

    Article  Google Scholar 

  • Cheong KS, Balasubramaniam J-R, Hung YP, Chuong WS, Amartalingam R (2010) Development of biodegradable plastic composite blends based on sago derived starch and natural rubber. Pertanika J Sci Technol 18(2):411–420

    Google Scholar 

  • Chocyk D, Gladyszewska B, Ciupak A, Oniszczuk T, Moscicki L, Rejak AJIA (2015) Influence of water addition on mechanical properties of thermoplastic starch foils. Int. Agrophys. 29(3):267–275

    Article  Google Scholar 

  • Chow WS, Leu YY, Ishak ZAM (2016) Mechanical, thermal and morphological properties of injection molded poly (lactic acid)/calcium carbonate nanocomposites. Period Polytech Mech Eng 60(1):15–20

    Article  Google Scholar 

  • Claro P, Neto A, Bibbo A, Mattoso L, Bastos M, Marconcini J et al (2016) Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. J Polym Environ 24:363–371

    Article  Google Scholar 

  • Coma V, Deschamps A, Martial-Gros A (2003) Bioactive packaging materials from edible chitosan polymer—antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68(9):2788–2792

    Article  Google Scholar 

  • Cristallini C, Barbani N, Bianchi F, Silvestri D, Guerra GD (2008) Biodegradable bioartificial materials made by chitosan and poly (vinyl alcohol). Part II: enzymatic degradability and drug-releasing ability. Biomed Eng Appl Basis Commun 20(05):321–328

    Article  Google Scholar 

  • Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836. https://doi.org/10.1016/j.biortech.2010.09.063

    Article  PubMed  Google Scholar 

  • da Silva TF, Menezes F, Montagna LS, Lemes AP, Passador FR (2019) Effect of lignin as accelerator of the biodegradation process of poly (lactic acid)/lignin composites. Mater Sci Eng B 251:114441

    Article  Google Scholar 

  • Davis SP (2011) Chitosan: manufacture, properties, and usage. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  • de Castro TR, de Macedo DC, de Genaro Chiroli DM, da Silva RC, Tebcherani SM (2022) The potential of cleaner fermentation processes for bioplastic production: a narrative review of polyhydroxyalkanoates (PHA) and polylactic acid (PLA). J Polym Environ 30(3):810–832. https://doi.org/10.1007/s10924-021-02241-z

    Article  Google Scholar 

  • de Souza RFB, de Souza FCB, Bierhalz ACK, Pires ALR, Moraes ÂM (2020) Biopolymer-based films and membranes as wound dressings. In: Biopolymer membranes and films. Elsevier, Amsterdam, pp 165–194

    Chapter  Google Scholar 

  • Dean K, Yu L, Bateman S, Wu DY (2007) Gelatinized starch/biodegradable polyester blends: processing, morphology, and properties. Appl Plym 103(2):802–811

    Article  Google Scholar 

  • Decaen P, Rolland-Sabaté A, Colomines G, Guilois S, Lourdin D, Della Valle G et al (2020) Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydr Polym 230:115591

    Article  PubMed  Google Scholar 

  • Dilkes-Hoffman L, Ashworth P, Laycock B, Pratt S, Lant P (2019a) Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resour Conserv Recycl 151:104479. https://doi.org/10.1016/j.resconrec.2019.104479

    Article  Google Scholar 

  • Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S (2019b) The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study. Mar Pollut Bull 142:15–24

    Article  PubMed  Google Scholar 

  • Dinkel F, Ros M (1996) The software tool EMIS. In: Schaltegger S, Braunschweig A, Büchel K, Dinkel F, Frischknecht R, Maillefer C et al (eds) Life cycle assessment (LCA) — Quo vadis? Birkhäuser Basel, Basel, pp 81–91

    Chapter  Google Scholar 

  • Dornburg V, Lewandowski I, Patel M (2003) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Ind Ecol 7(3–4):93–116. https://doi.org/10.1162/108819803323059424

    Article  Google Scholar 

  • Dotto GL, Pinto LA (2017) General considerations about chitosan. 1084:3–33

    Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  Google Scholar 

  • Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300

    Article  Google Scholar 

  • Dutta P, Tripathi S, Mehrotra G, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    Article  Google Scholar 

  • Düzakin E (2021) Sürdürülebilir tasarim yaklaşimi açisindan biyoplastiklerin incelenmesi. Sanat ve Tasarım Dergisi 11(1):73–92

    Article  Google Scholar 

  • EB: Bioplastics market data (2022) https://www.european-bioplastics.org/market/. Accessed 08.02.2023

  • Elsabee MZ, Morsi RE, Al-Sabagh AJC (2009) Surface active properties of chitosan and its derivatives. Colloids Surf B Biointerfaces 74(1):1–16

    Article  PubMed  Google Scholar 

  • Escobar N, Haddad S, Börner J, Britz W (2018) Land use mediated GHG emissions and spillovers from increased consumption of bioplastics. Environ Res Lett 13(12):125005

    Article  Google Scholar 

  • Ferri J, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68

    Article  PubMed  Google Scholar 

  • Flaris V, Singh G (2009) Recent developments in biopolymers. Vinyl Addit Technol 15(1):1–11

    Article  Google Scholar 

  • Focher B, Massoli A, Torri G, Gervasini A, Morazzoni F (1986) High molecular weight chitosan 6-O-sulfate. Synthesis, ESR and NMR characterization. Die Makromol Chem 187(11):2609–2620

    Article  Google Scholar 

  • Fonseca-García A, Jiménez-Regalado EJ, Aguirre-Loredo RY (2021) Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydr Polym 251:117009

    Article  PubMed  Google Scholar 

  • Gama N, Ferreira A, Evtuguin DV (2022) New poly(lactic acid) composites produced from coffee beverage wastes. J Appl Polym Sci 139(1):51434. https://doi.org/10.1002/app.51434

    Article  Google Scholar 

  • García-Guzmán L, Cabrera-Barjas G, Soria-Hernández CG, Castaño J, Guadarrama-Lezama AY, Llamazares SR (2022) Progress in starch-based materials for food packaging applications. Polysaccharides 3(1):136–177

    Article  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Pathan E, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421

    Article  PubMed  Google Scholar 

  • Graceraj P, Mani S (2022) Life cycle assessment of manufacturing cellulose nanofibril-reinforced chitosan composite films for packaging applications. Int J Life Cycle Assess 27. https://doi.org/10.1007/s11367-022-02035-y

  • Gürler N, Paşa S, Temel H (2021) Silane doped biodegradable starch-PLA bilayer films for food packaging applications: mechanical, thermal, barrier and biodegradability properties. J Taiwan Inst Chem Eng 123:261–271

    Article  Google Scholar 

  • Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98(1):139–145. https://doi.org/10.1016/j.carbpol.2013.05.069

    Article  PubMed  Google Scholar 

  • Haghighi H, Licciardello F, Fava P, Siesler HW, Pulvirenti A (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26:100551

    Article  Google Scholar 

  • Hanušová K, Dobiáš J, Klaudisová K (2009) Effect of packaging films releasing antimicrobial agents on stability of food products. Czech J Food Sci 27:347–349

    Article  Google Scholar 

  • Heras A, Rodriguez N, Ramos V, Agullo E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 44(1):1–8

    Article  Google Scholar 

  • Hermansson F, Janssen M, Svanström M (2019) Prospective study of lignin-based and recycled carbon fibers in composites through meta-analysis of life cycle assessments. J Clean Prod 223:946–956

    Article  Google Scholar 

  • Holme KR, Perlin AS (1997) Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydr Res 302(1–2):7–12

    Article  PubMed  Google Scholar 

  • Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Monatsh Chem 140:1403–1420

    Article  Google Scholar 

  • Hongsheng L, Fengwei X, Long Y, Ling C, Lin L (2009) Thermal processing of starch-based polymers. Progr Polym Sci 34(12):1348–1368

    Article  Google Scholar 

  • Hu Y, Daoud WA, Fei B, Chen L, Kwan TH, Ki Lin CS (2017) Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. J Clean Prod 165:157–167. https://doi.org/10.1016/j.jclepro.2017.07.067

    Article  Google Scholar 

  • Hubackova J, Dvorackova M, Svoboda P, Mokrejs P, Kupec J, Pozarova I et al (2013) Influence of various starch types on PCL/starch blends anaerobic biodegradation. Polym Testing 32(6):1011–1019

    Article  Google Scholar 

  • Ikeo Y, Aoki K, Kishi H, Matsuda S, Murakami A (2006) Nano clay reinforced biodegradable plastics of PCL starch blends. Polym Adv Technol 17(11–12):940–944

    Article  Google Scholar 

  • Isotton F, Bernardo G, Baldasso C, Rosa L, Zeni MJIC (2015) The plasticizer effect on preparation and properties of etherified corn starchs films. Ind Crop Prod 76:717–724

    Article  Google Scholar 

  • Jantanasakulwong K, Leksawasdi N, Seesuriyachan P, Wongsuriyasak S, Techapun C, Ougizawa T (2016) Reactive blending of thermoplastic starch, epoxidized natural rubber and chitosan. Eur Polym J 84:292–299

    Article  Google Scholar 

  • Jayakumar R, Prabaharan M, Muzzarelli RA (2011) Chitosan for biomaterials I. Springer, Cham

    Book  Google Scholar 

  • Jayakumar A, Radoor S, Kim JT, Rhim JW, Nandi D, Parameswaranpillai J et al (2022) Recent innovations in bionanocomposites-based food packaging films – A comprehensive review. Food Packag Shelf Life 33:100877. https://doi.org/10.1016/j.fpsl.2022.100877

    Article  Google Scholar 

  • Jia Z, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333(1):1–6

    Article  PubMed  Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330. https://doi.org/10.1007/BF02978505

    Article  Google Scholar 

  • Kaenzig J, Houillon G, Jolliet O, Rocher M, Bewa H, Orphelin M, et al (2004) Comparison of the environmental impact of bio-based products. University of StGallen

    Google Scholar 

  • Kahvand F, Fasihi M (2019) Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. Int J Biol Macromol 140:775–781

    Article  PubMed  Google Scholar 

  • Kakadellis S, Harris ZM (2020) Don’t scrap the waste: the need for broader system boundaries in bioplastic food packaging life-cycle assessment – a critical review. J Clean Prod 274:122831. https://doi.org/10.1016/j.jclepro.2020.122831

    Article  Google Scholar 

  • Kanpiengjai A, Lumyong S, Pathom-aree W, Khanongnuch C (2014) Starchy effluent from rice noodle manufacturing process as feasible substrate for direct lactic acid production by Lactobacillus plantarum S21. J Korean Soc Appl Biol Chem 57(2):217–220. https://doi.org/10.1007/s13765-013-4311-2

    Article  Google Scholar 

  • Kasirajan S, Umapathy D, Chandrasekar C, Aafrin V, Jenitapeter M, Udhyasooriyan L et al (2019) Preparation of poly(lactic acid) from Prosopis juliflora and incorporation of chitosan for packaging applications. J Biosci Bioeng 128(3):323–331. https://doi.org/10.1016/j.jbiosc.2019.02.013

    Article  PubMed  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  PubMed  Google Scholar 

  • Khanzada B, Mirza B, Ullah A (2023) Chitosan based bio-nanocomposites packaging films with unique mechanical and barrier properties. Food Packag Shelf Life 35:101016. https://doi.org/10.1016/j.fpsl.2022.101016

    Article  Google Scholar 

  • Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57(6):793–804

    Article  Google Scholar 

  • Koch M, Spierling S, Venkatachalam V, Endres H-J, Owsianiak M, Vea EB et al (2023) Comparative assessment of environmental impacts of 1st generation (corn feedstock) and 3rd generation (carbon dioxide feedstock) PHA production pathways using life cycle assessment. Sci Total Environ 863:160991. https://doi.org/10.1016/j.scitotenv.2022.160991

    Article  PubMed  Google Scholar 

  • Kodsangma A, Homsaard N, Nadon S, Rachtanapun P, Leksawasdi N, Phimolsiripol Y et al (2020) Effect of sodium benzoate and chlorhexidine gluconate on a bio-thermoplastic elastomer made from thermoplastic starch-chitosan blended with epoxidized natural rubber. Carbohydr Polym 242:116421

    Article  PubMed  Google Scholar 

  • Koltzenburg S, Maskos M, Nuyken O, Koltzenburg S, Maskos M, Nuyken O (2017) Polymers and the environment. Polym Chem:533–549

    Google Scholar 

  • Kumari SVG, Pakshirajan K, Pugazhenthi GJ (2022) Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.08.203

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci Int J 16(4):149–158

    Article  Google Scholar 

  • Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31(6):1153–1161

    Article  PubMed  Google Scholar 

  • Leelaphiwat P, Pechprankan C, Siripho P, Bumbudsanpharoke N, Harnkarnsujarit N (2022) Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chem 369:130956

    Article  PubMed  Google Scholar 

  • Lendvai L, Apostolov A, Karger-Kocsis JJCP (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly (butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572

    Article  PubMed  Google Scholar 

  • Levine AC, Heberlig GW, Nomura CT (2016) Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). Int J Biol Macromol 83:358–365. https://doi.org/10.1016/j.ijbiomac.2015.11.048

    Article  PubMed  Google Scholar 

  • Li H, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279

    Article  PubMed  Google Scholar 

  • Lillo L, Matsuhiro BJ (1997) Chemical modifications of carboxylated chitosan. Carbohydr Polym 34(4):397–401

    Article  Google Scholar 

  • Liu H, **e F, Yu L, Chen L, Lin L (2009) Thermal processing of starch-based polymers. Progr Polym Sci 34(12):1348–1368

    Article  Google Scholar 

  • Liu Z, Jiang M, Bai X, Dong X, Tong J, Zhou J (2012) Effect of postcrosslinking modification with glutaraldehyde on the properties of thermoplastic starch/poly (vinyl alcohol) blend films. Appl Polym 124(5):3774–3781

    Article  Google Scholar 

  • Liu H, Adhikari R, Guo Q, Adhikari B (2013) Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J Food Eng 116(2):588–597

    Article  Google Scholar 

  • Liu X, Xu Y, Zhan X, **e W, Yang X, Cui SW et al (2020) Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. Int J Biol Macromol 144:483–490. https://doi.org/10.1016/j.ijbiomac.2019.12.126

    Article  PubMed  Google Scholar 

  • Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malay Polym J 2(2):31–57

    Google Scholar 

  • Lu D, **ao C, Xu S (2009) Starch-based completely biodegradable polymer materials. eXPRESS Polym Lett 3(6):366–375

    Article  Google Scholar 

  • Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Luckachan GE, Pillai C (2011) Biodegradable polymers-a review on recent trends and emerging perspectives. J Environ Polym Degrad 19:637–676

    Article  Google Scholar 

  • MacArthur E (2017) Beyond plastic waste. Am Assoc Adv Sci. 358:843

    Google Scholar 

  • Magalhães NF, Andrade CT (2010) Calcium bentonite as reinforcing nanofiller for thermoplastic starch. J Braz Chem Soc 21:202–208

    Article  Google Scholar 

  • Mahieu A, Terrié C, Youssef BJIC (2015) Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: influence of water content. Ind Crop Prod 72:192–199

    Article  Google Scholar 

  • Mazerolles T, Heuzey M-C, Soliman M, Martens H, Klep**er R, Huneault MA (2020) Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. J Polym Res 27(2):44. https://doi.org/10.1007/s10965-020-2015-y

    Article  Google Scholar 

  • Mitrus M, Moscicki L (2009) Physical properties of thermoplastic starches. Int Agrophysics 23(3):305–308

    Google Scholar 

  • Mizuno S, Hiroe A, Fukui T, Abe H, Tsuge T (2017) Fractionation and thermal characteristics of biosynthesized polyhydoxyalkanoates bearing aromatic groups as side chains. Polym J 49(7):557–565. https://doi.org/10.1038/pj.2017.20

    Article  Google Scholar 

  • Moalla S, Ammar I, Fauconnier M-L, Danthine S, Blecker C, Besbes S et al (2021) Development and characterization of chitosan films carrying Artemisia campestris antioxidants for potential use as active food packaging materials. Int J Biol Macromol 183:254–266. https://doi.org/10.1016/j.ijbiomac.2021.04.113

    Article  PubMed  Google Scholar 

  • Molina-Besch K (2022) Use phase and end-of-life modeling of biobased biodegradable plastics in life cycle assessment: a review. Clean Techn Environ Policy 24(10):3253–3272. https://doi.org/10.1007/s10098-022-02373-3

    Article  Google Scholar 

  • Moran HBT, Turley JL, Andersson M, Lavelle EC (2018) Immunomodulatory properties of chitosan polymers. Biomaterials 184:1–9. https://doi.org/10.1016/j.biomaterials.2018.08.054

    Article  PubMed  Google Scholar 

  • Mościcki L, Mitrus M, Wójtowicz A, Oniszczuk T, Rejak A, Janssen L (2012) Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int 47(2):291–299

    Article  Google Scholar 

  • Muzzarelli RA (1983) Chitin and its derivatives: new trends of applied research. Carbohydr Polym 3(1):53–75

    Article  Google Scholar 

  • Muzzarelli RA (1988) Carboxymethylated chitins and chitosans. Carbohydr Polym 8(1):1–21

    Article  Google Scholar 

  • Muzzarelli RA, Tanfani F, Emanuelli M, Mariotti SJ (1982) N-(carboxymethylidene) chitosans and N-(carboxymethyl) chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr Res 107(2):199–214

    Article  Google Scholar 

  • Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916

    Article  Google Scholar 

  • Nair NR, Nampoothiri KM, Banarjee R, Reddy G (2016) Simultaneous saccharification and fermentation (SSF) of jackfruit seed powder (JFSP) to l-lactic acid and to polylactide polymer. Bioresour Technol 213:283–288. https://doi.org/10.1016/j.biortech.2016.03.020

    Article  PubMed  Google Scholar 

  • Namboodiri MT, Pakshirajan K (2019) Sustainable and green approach of chitosan production from Penicillium citrinum biomass using industrial wastewater as a cheap substrate. J Environ Manag 240:431–440

    Article  Google Scholar 

  • Nayak SJP-PT (2010) Biodegradable PBAT/starch nanocomposites. Polym-Plastics Technol Eng 49(14):1406–1418

    Article  Google Scholar 

  • Negim E, Rakhmetullayeva R, Yeligbayeva GZ, Urkimbaeva P, Primzharova S, Kaldybekov D et al (2014) Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications. Int J Basic Appl Sci 3(3):263

    Google Scholar 

  • Noivoil N, Yoksan RJ (2021) Compatibility improvement of poly (lactic acid)/thermoplastic starch blown films using acetylated starch. Appl Polym 138(2):49675

    Article  Google Scholar 

  • Odier A (1823) Mémoire sur la composition chimique des parties cornées des insectes. 1:29–42

    Google Scholar 

  • Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromolecules 17(8):2603–2618. https://doi.org/10.1021/acs.biomac.6b00619

    Article  PubMed  Google Scholar 

  • Patel M, Crank M, Dornburg V, Hermann B, Roes AL, Hüsing B, et al (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources—The BREW Project

    Google Scholar 

  • Pavoni JMF, Luchese CL, Tessaro IC (2019) Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int J Biol Macromol 138:693–703

    Article  PubMed  Google Scholar 

  • Peinemann JC, Demichelis F, Fiore S, Pleissner D (2019) Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. Bioresour Technol 289:121631. https://doi.org/10.1016/j.biortech.2019.121631

    Article  PubMed  Google Scholar 

  • Pellis A, Guebitz GM, Nyanhongo GS (2022) Chitosan: sources, processing and modification techniques. Gels (Basel, Switzerland) 8(7). https://doi.org/10.3390/gels8070393

  • Priyadarshi R, Sauraj, Kumar B, Deeba F, Kulshreshtha A, Negi YS (2018) Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocoll. 85:158–166. https://doi.org/10.1016/j.foodhyd.2018.07.003

    Article  Google Scholar 

  • Purde Ö (2009) Endüstri ürünleri tasarımında kullanılan çevre Dostu Plastik Malzemeler Ve plastiğin Geri kazanımı. Marmara Universitesi (Turkey), Turkey, p 137

    Google Scholar 

  • Quaranta E (2023) Lubricant oil consumption and opportunities for oil-free turbines in the hydropower sector: a European assessment. Energies 16(2):834

    Article  Google Scholar 

  • Ragaert P, Buntinx M, Maes C, Vanheusden C, Peeters R, Wang S et al (2019) Polyhydroxyalkanoates for food packaging applications. Reference module in food science. Elsevier, Amsterdam

    Google Scholar 

  • Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11(1):120–127

    Article  Google Scholar 

  • Ramírez MGL, Satyanarayana KG, Iwakiri S, de Muniz GB, Tanobe V, Flores-Sahagun TS (2011) Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr Polym 86(4):1712–1722

    Article  Google Scholar 

  • Reichert CL, Bugnicourt E, Coltelli M-B, Cinelli P, Lazzeri A, Canesi I et al (2020) Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers (Basel) 12(7):1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaee M, Askari G, EmamDjomeh Z, Salami M (2020) UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. Int J Biol Macromol 147:990–996. https://doi.org/10.1016/j.ijbiomac.2019.10.066

    Article  PubMed  Google Scholar 

  • Rhazi M, Desbrieres J, Tolaimate A, Alagui A, Vottero P (2000) Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym Int 49(4):337–344

    Article  Google Scholar 

  • Rhim J-W, Wang L-F (2013) Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96(1):71–81

    Article  PubMed  Google Scholar 

  • Riyajan S-A, Patisat S (2018) A novel packaging film from cassava starch and natural rubber. J Polym Environ 26:2845–2854

    Article  Google Scholar 

  • Rosa D, Guedes C, Pedroso A, Calil M (2004) The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly (ɛ-caprolactone) with corn starch blends. Mater Sci Eng C 24(5):663–670

    Article  Google Scholar 

  • Rosa DS, Guedes CG, Casarin F (2005) Mechanical behavior and biodegradation of poly (ε-caprolactone)/starch blends with and without expansor. Polym Bull 54:321–333

    Article  Google Scholar 

  • Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S et al (2015) Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J Clean Prod 86:132–145

    Article  Google Scholar 

  • Rouget C (1859) Des substances amylacées dans les tissus des animaux, spécialement des Articulés (chitine). Comp Rend 48:792–795

    Google Scholar 

  • Roy SB, Ramaraj B, Shit S, Nayak SK (2011) Polypropylene and potato starch biocomposites: physicomechanical and thermal properties. Appl Polym Sci 120(5):3078–3086

    Article  Google Scholar 

  • Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y et al (2020) Recent developments in polyhydroxyalkanoates (PHAs) production–A review. Bioresour Technol 306:123132

    Article  PubMed  Google Scholar 

  • Saetun V, Chiachun C, Riyajan SA, Kaewtatip K (2017) Green composites based on thermoplastic starch and rubber wood sawdust. Polym Compos 38(6):1063–1069

    Article  Google Scholar 

  • Sahari J, Sapuan S, Zainudin E, Maleque M (2013) Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydr Polym 92(2):1711–1716

    Article  PubMed  Google Scholar 

  • Salari M, Khiabani MS, Mokarram RR, Ghanbarzadeh B, Kafil HS (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocol 84:414–423

    Article  Google Scholar 

  • Salehudin MH, Salleh E, Mamat SNH, Muhamad II (2014) Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Proc Chem 9:23–33

    Article  Google Scholar 

  • Schmid MT, Sykacek E, O’Connor K, Omann M, Mundigler N, Neureiter M (2022) Pilot scale production and evaluation of mechanical and thermal properties of P(3HB) from Bacillus megaterium cultivated on desugarized sugar beet molasses. J Appl Polym Sci 139(3):51503. https://doi.org/10.1002/app.51503

    Article  Google Scholar 

  • Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372

    Article  PubMed  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265

    Article  PubMed  Google Scholar 

  • Shankar S, Rhim J-W (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123. https://doi.org/10.1016/j.foodhyd.2018.03.054

    Article  Google Scholar 

  • Shanmuganathan R, Edison T, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736. https://doi.org/10.1016/j.ijbiomac.2019.02.060

    Article  PubMed  Google Scholar 

  • Shujun W, Jiugao Y, **glin Y (2005) Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polym Degrad Stab 87(3):395–401. https://doi.org/10.1016/j.polymdegradstab.2004.08.012

    Article  Google Scholar 

  • Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027

    Article  PubMed  Google Scholar 

  • Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S et al (2018) Bio-based plastics - A review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  • Standard A (2015) D5338-15, standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures, ASTM B. ASTM International: West Conshohocken, PA

    Google Scholar 

  • Stepto R (2006) Understanding the processing of thermoplastic starch. In: Macromolecular symposia. Wiley Online Library, Hoboken, NJ, pp 571–577

    Google Scholar 

  • Suwanmanee U, Varabuntoonvit V, Chaiwutthinan P, Tajan M, Mungcharoen T, Leejarkpai T (2013) Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess 18(2):401–417. https://doi.org/10.1007/s11367-012-0479-7

    Article  Google Scholar 

  • Syamani F, Kusumaningrum W, Akbar F, Widyaningrum B, Pramasari D (2020) Characteristics of bioplastic made from modified cassava starch with addition of polyvinyl alcohol. IOP Conference Series: Earth and Environmental Science: IOP Publishing, p 012016

    Google Scholar 

  • Tamer TM, Hassan MA, Omer AM, Valachová K, Eldin MSM, Collins MN et al (2017) Antibacterial and antioxidative activity of O-amine functionalized chitosan. Carbohydr Polym 169:441–450. https://doi.org/10.1016/j.carbpol.2017.04.027

    Article  PubMed  Google Scholar 

  • Trovatti E, Carvalho AJF, Gandini A (2015) A new approach to blending starch with natural rubber. Polym Int 64(5):605–610

    Article  Google Scholar 

  • Tsapekos P, Alvarado-Morales M, Baladi S, Bosma EF, Angelidaki I (2020) Fermentative production of lactic acid as a sustainable approach to valorize household bio-waste. Front Sustain 1

    Google Scholar 

  • Tuhin MO, Rahman N, Haque M, Khan RA, Dafader N, Islam R et al (2012) Modification of mechanical and thermal property of chitosan–starch blend films. Ration Phys Chem 81(10):1659–1668

    Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769

    Article  Google Scholar 

  • Vasile C, Darie RN, Cheaburu-Yilmaz CN, Pricope G-M, Bračič M, Pamfil D et al (2013) Low density polyethylene – Chitosan composites. Compos Part B 55:314–323. https://doi.org/10.1016/j.compositesb.2013.06.008

    Article  Google Scholar 

  • Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  PubMed  Google Scholar 

  • Wang D-w, Sun L-S, Peng X-l, Runt J, Kuo M-c, Huang K-S et al (2019) Tapioca/polyvinyl alcohol thermoplastic starch materials processed with the aid of supercritical CO2. Food Packag Shelf. Life 22:100425

    Google Scholar 

  • Wangprasertkul J, Siriwattanapong R, Harnkarnsujarit N (2021) Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control 123:107763

    Article  Google Scholar 

  • Weber C, Haugaard V, Festersen R, Bertelsen GJFA (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19(S1):172–177

    Article  PubMed  Google Scholar 

  • Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B et al (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 16(s1):S169–SS81. https://doi.org/10.1111/j.1530-9290.2012.00468.x

    Article  Google Scholar 

  • Westlake JR, Tran MW, Jiang Y, Zhang X, Burrows AD, **e M (2023) Biodegradable biopolymers for active packaging: demand, development and directions. Sustain Food Technol 1(1):50–72. https://doi.org/10.1039/D2FB00004K

    Article  Google Scholar 

  • Williams H, Wikström F, Löfgren M (2008) A life cycle perspective on environmental effects of customer focused packaging development. J Clean Prod 16(7):853–859

    Article  Google Scholar 

  • Witt U, Yamamoto M, Seeliger U, Müller RJ, Warzelhan V (1999) Biodegradable polymeric materials—not the origin but the chemical structure determines biodegradability. Angew Chem Int Ed Engl 38(10):1438–1442

    Article  PubMed  Google Scholar 

  • Wootthikanokkhan J, Kasemwananimit P, Sombatsompop N, Kositchaiyong A, Isarankura na Ayutthaya S, Kaabbuathong NJ. (2012) Preparation of modified starch-grafted poly (lactic acid) and a study on compatibilizing efficacy of the copolymers in poly (lactic acid)/thermoplastic starch blends. Appl Polym 126(S1):E389–EE96

    Google Scholar 

  • Wötzel K, Wirth R, Flake M (1999) Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Makromol Chem 272(1):121–127. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<121::AID-APMC121>3.0.CO;2-T

    Article  Google Scholar 

  • Wu C-S (2003) Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym Dregrad Stab 80(1):127–134

    Article  Google Scholar 

  • **e W, Xu P, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr Polym 50(1):35–40

    Article  Google Scholar 

  • **e F, Yu L, Liu H, Chen L (2006) Starch modification using reactive extrusion. Starch 58(3–4):131–139

    Article  Google Scholar 

  • Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crop Prod 21(2):185–192

    Article  Google Scholar 

  • Yan J, Cui R, Qin Y, Li L, Yuan M (2021) A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness. Int J Biol Macromol 177:328–336. https://doi.org/10.1016/j.ijbiomac.2021.02.137

    Article  PubMed  Google Scholar 

  • Yang Y, Tang Z, **ong Z, Zhu J (2015) Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid). Int J Biol Macromol 77:273–279

    Article  PubMed  Google Scholar 

  • Ye J, Hu D, Che X, Jiang X, Li T, Chen J et al (2018) Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 47:143–152. https://doi.org/10.1016/j.ymben.2018.03.013

    Article  PubMed  Google Scholar 

  • Yildiz PO, Yangilar F (2014) Gıda endüstrisinde kitosanın kullanımı. Erciyes Üniv Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30(3):198–206

    Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174. https://doi.org/10.3390/md13031133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yusoff NH, Pal K, Narayanan T, de Souza FG (2021) Recent trends on bioplastics synthesis and characterizations: polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J Mol Struct 1232:129954

    Article  Google Scholar 

  • Zah R, Hischier R, Gauch M, Lehmann M, Böni H, Wäger P (2007) Life cycle impact assessment of energy products: environmental impact assessment of biofuels. Executive Summary

    Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  • Zhang C, ** Q, Zhang H, Shen J (2003) Synthesis and characterization of water-soluble O-succinyl-chitosan. Eur Polym J 39(8):1629–1634

    Article  Google Scholar 

  • Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics—a review. Crit Rev Food Sci Nutr 54(10):1353–1370

    Article  PubMed  Google Scholar 

  • Zhang L, Liu Z, Wang X, Dong S, Sun Y, Zhao Z (2019) The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol Technol 155:47–56. https://doi.org/10.1016/j.postharvbio.2019.05.013

    Article  Google Scholar 

  • Zhang L, Liu Z, Sun Y, Wang X, Li L (2020a) Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packag Shelf Life 24:100470. https://doi.org/10.1016/j.fpsl.2020.100470

    Article  Google Scholar 

  • Zhang L, Liu Z, Sun Y, Wang X, Li L (2020b) Effect of α-tocopherol antioxidant on rheological and physicochemical properties of chitosan/zein edible films. LWT 118:108799. https://doi.org/10.1016/j.lwt.2019.108799

    Article  Google Scholar 

  • Zhou J, Ma Y, Ren L, Tong J, Liu Z, **e L (2009) Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr Polym 76(4):632–638

    Article  Google Scholar 

  • Zhou L, Zhao G, Feng Y, Yin J, Jiang W (2015) Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: influence of starch esterification degree. Carbohydr Polym 127:79–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çisem Kırbıyık Kurukavak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kırbıyık Kurukavak, Ç., Tok, M. (2023). Environmental Impact of Biobased Materials. In: Ahmed, S. (eds) Biobased Packaging Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-6050-7_9

Download citation

Publish with us

Policies and ethics

Navigation