Vitamin-Based Derivatives for the Management of Alzheimer’s Disease

  • Chapter
  • First Online:
Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Abstract

Vitamins are organic compounds; they help in the regulation of many bodily functions like cell proliferation and differentiation, immunological response, and metabolism. A deficiency of these molecules can cause severe medical conditions, i.e., beriberi, xerophthalmia, scurvy, Crohn’s disease, and others. Furthermore, studies have shown that vitamin deficiency might lead to many neuronal dysfunctions, even hampering the growth of neurons. This chapter explores the role of vitamins and their derivatives in the pathology of Alzheimer’s disease. Alzheimer’s disease is a multifactorial neurodegenerative disease, and the cause of this disease is still unknown. However, several hypotheses try to explain the aetiology of the disease, such as Aβ hypothesis, metal ion hypothesis, calcium homeostasis, cholinergic hypothesis, tau propagation, etc. Scientific literature reports several derivatives that show potential to treat Alzheimer’s disease. Primarily these compounds act on nuclear receptors to activate ADAM10, inhibiting AChE or BuChE, neutralisation of ROS, inhibition of GSK-3, and amyloid-beta aggregation. Moreover, some can easily pass the BBB, which is crucial in targeting neurological disease. Vitamins and their derivatives show promising results in managing Alzheimer’s disease, even several are in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

ADAM10:

A Disintegrin metalloproteinase 10

APL:

Acute promyelocytic leukaemia

ApoE:

Apolipoprotein E

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

ATRA:

All-trans RA

Aβ:

Amyloid-beta

BACE1:

Beta-site APP-cleaving enzyme 1

BBB:

Blood-brain barrier

BEXA:

Bexarotene

BFT:

Benfotiamine

BHQ:

Biotin-8-hydroxyquinoline

BuChE:

Butyrylcholinesterase

CAS:

Catalytic anionic site

CNS:

Central nervous system

COVID-19:

Coronavirus disease 2019

COX:

Cyclooxygenase

DBT:

Dibenzoylthiamine

DNA:

Deoxyribonucleic acid

FDA:

Food and Drug Administration

GLUT:

Glucose transporters

GSH:

Glutathione

GSK-3:

Glycogen synthase kinase 3

HBHQ:

8-Hydroxyquinolyl-biotin hydrazine

IL-6:

Interleukin-6

LPS:

Lipopolysaccharides

MAO-B:

Monoamine oxidase B

MAPK:

Mitogen-activated protein kinase

MARRS:

Membrane-associated, rapid response steroid-binding

MEM:

Memantine

NAD:

Nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

NEP:

Neprilysin

NMDA:

N-Methyl-d-aspartate

PAS:

Peripheral anionic site

RA:

Retinoic acid

RAR-α:

Retinoic acid receptor alpha

RNA:

Ribonucleic acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RXR:

Retinoid X receptor

SVCT1:

Sodium-dependent vitamin C transporter-1

SVCT2:

Sodium-dependent vitamin C transporter-2

ThT:

Thioflavin T

TrkB:

Tyrosine kinase receptor B

VDR:

Vitamin D receptor

VK:

Vitamin K

VK2:

Vitamin K2

VK3:

Vitamin K3

α-T3:

Αlpha-tocotrienol

α-TOC:

Αlpha-tocopherol

α-TQ:

Alpha-tocopherolquinone

γ-T3:

Gamma-tocotrienol

References

  • Abobaker A, Alzwi A, Alraied AHA (2020) Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep 72(6):1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annweiler C, Beauchet O (2011) Vitamin D-mentia: randomized clinical trials should be the next step. Neuroepidemiology 37(3–4):249–258

    Article  PubMed  Google Scholar 

  • Balducci C, Paladini A, Micotti E, Tolomeo D, La Vitola P, Grigoli E, Richardson JC, Forloni G (2015) The continuing failure of bexarotene in Alzheimer’s disease mice. J Alzheimers Dis 46(2):471–482

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AB, Usman M, Ali F, Satti SA (2016) Vitamin supplementation as an adjuvant treatment for Alzheimer’s disease. J Clin Diagn Res 10(8):OE07–OE11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidon-Chanal A, Fuertes A, Alonso D, Perez DI, Martinez A, Luque FJ, Medina M (2013) Evidence for a new binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem 60:479–489

    Article  CAS  PubMed  Google Scholar 

  • Bivona G, Gambino CM, Iacolino G, Ciaccio M (2019) Vitamin D and the nervous system. Neurol Res 41(9):827–835

    Article  CAS  PubMed  Google Scholar 

  • Chin KY, Tay SS (2018) A review on the relationship between tocotrienol and Alzheimer disease. Nutrients 10(7):881

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins EG, Langbein WE, Orebaugh C, Bammert C, Hanson K, Reda D, Edwards LC, Littooy FN (2003) PoleStriding exercise and vitamin E for management of peripheral vascular disease. Med Sci Sports Exerc 35(3):384–393

    Article  CAS  PubMed  Google Scholar 

  • Crisostomo AG, Moreno RB, Navaratnam S, Wilkinson JA, Bisby RH (2007) Generation of superoxide and singlet oxygen from alpha-tocopherolquinone and analogues. Free Radic Res 41(6):730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czernichow S, Hercberg S (2001) Interventional studies concerning the role of antioxidant vitamins in cardiovascular diseases: a review. J Nutr Health Aging 5(3):188–195

    CAS  PubMed  Google Scholar 

  • Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 28(45):11622–11634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNicolantonio JJ, Bhutani J, O’Keefe JH (2015) The health benefits of vitamin K. Open Heart 2(1):e000300

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong R, Wang H, Ye J, Wang M, Bi Y (2019) Publication trends for Alzheimer’s disease worldwide and in China: a 30-year bibliometric analysis. Front Hum Neurosci 13:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Endres K, Fahrenholz F, Lotz J, Hiemke C, Teipel S, Lieb K, Tuscher O, Fellgiebel A (2014) Increased CSF APPs-alpha levels in patients with Alzheimer disease treated with acitretin. Neurology 83(21):1930–1935

    Article  CAS  PubMed  Google Scholar 

  • Fahrenholz F, Tippmann F, Endres K (2010) Retinoids as a perspective in treatment of Alzheimer’s disease. Neurodegener Dis 7(1–3):190–192

    Article  CAS  PubMed  Google Scholar 

  • Fan YG, Guo T, Han XR, Liu JL, Cai YT, Xue H, Huang XS, Li YC, Wang ZY, Guo C (2019) Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine 45:393–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferland G (2012) Vitamin K and the nervous system: an overview of its actions. Adv Nutr 3(2):204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford AH, Flicker L, Alfonso H, Thomas J, Clarnette R, Martins R, Almeida OP (2010) Vitamins B(12), B(6), and folic acid for cognition in older men. Neurology 75(17):1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa H, Nakagomi M, Yamagata N, Katsuki H, Kawahara K, Kitaoka K, Miki T, Shudo K (2012) Tamibarotene: a candidate retinoid drug for Alzheimer’s disease. Biol Pharm Bull 35(8):1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Gall Z, Szekely O (2021) Role of vitamin D in cognitive dysfunction: new molecular concepts and discrepancies between animal and human findings. Nutrients 13(11):3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo E, Lloret A, Fuchsberger T, Vina J (2014) Abeta and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm MO, Mett J, Hartmann T (2016) The impact of vitamin E and other fat-soluble vitamins on Alzheimer’s disease. Int J Mol Sci 17(11):1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm MOW, Thiel A, Lauer AA, Winkler J, Lehmann J, Regner L, Nelke C, Janitschke D, Benoist C, Streidenberger O, Stotzel H, Endres K, Herr C, Beisswenger C, Grimm HS, Bals R, Lammert F, Hartmann T (2017) Vitamin D and its analogues decrease amyloid-beta (Abeta) formation and increase Abeta-degradation. Int J Mol Sci 18(12):2764

    Article  PubMed  PubMed Central  Google Scholar 

  • Gugliandolo A, Bramanti P, Mazzon E (2017) Role of vitamin E in the treatment of Alzheimer’s disease: evidence from animal models. Int J Mol Sci 18(12):2504

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46(6):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, Liu Y, Chen J, Li T (2015) Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 51(2):633–647

    Article  CAS  PubMed  Google Scholar 

  • Huy PD, Yu YC, Ngo ST, Thao TV, Chen CP, Li MS, Chen YC (2013) In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer’s disease. Biochim Biophys Acta 1830(4):2960–2969

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim NF, Hamezah HS, Yanagisawa D, Tsuji M, Kiuchi Y, Ono K, Tooyama I (2021) The effect of alpha-tocopherol, alpha- and gamma-tocotrienols on amyloid-beta aggregation and disaggregation in vitro. Biochem Biophys Rep 28:101131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiaranaikulwanitch J, Pandith H, Tadtong S, Thammarat P, Jiranusornkul S, Chauthong N, Nilkosol S, Vajragupta O (2021) Novel multifunctional ascorbic triazole derivatives for amyloidogenic pathway inhibition, anti-inflammation, and neuroprotection. Molecules 26(6):1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joe E, Ringman JM (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367:l6217

    Article  PubMed  Google Scholar 

  • Josey BJ, Inks ES, Wen X, Chou CJ (2013) Structure-activity relationship study of vitamin K derivatives yields highly potent neuroprotective agents. J Med Chem 56(3):1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord 2(2):203–216

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Wang BJ, Hsu WM, Chang MY, Liang SM, Liao YF (2013) Retinoic acid-elicited RARalpha/RXRalpha signaling attenuates Abeta production by directly inhibiting gamma-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 4(7):1093–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DO (2016) B Vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients 8(2):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocot J, Luchowska-Kocot D, Kielczykowska M, Musik I, Kurzepa J (2017) Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 9(7):659

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Gahlawat A, Kumar RN, Singh YP, Modi G, Garg P (2022) Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. J Biomol Struct Dyn 40(7):2878–2892

    Article  CAS  PubMed  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6(12):5453–5472

    Article  PubMed  PubMed Central  Google Scholar 

  • Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH, Fried L, Kestenbaum BR, Kuller LH, Langa KM, Lopez OL, Kos K, Soni M, Llewellyn DJ (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83(10):920–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu’o’ng K, Nguyen LT (2011) Role of thiamine in Alzheimer’s disease. Am J Alzheimers Dis Other Dement 26(8):588–598

    Article  Google Scholar 

  • Manfredini S, Pavan B, Vertuani S, Scaglianti M, Compagnone D, Biondi C, Scatturin A, Tanganelli S, Ferraro L, Prasad P, Dalpiaz A (2002) Design, synthesis and activity of ascorbic acid prodrugs of nipecotic, kynurenic and diclophenamic acids, liable to increase neurotropic activity. J Med Chem 45(3):559–562

    Article  CAS  PubMed  Google Scholar 

  • Mimori Y, Katsuoka H, Nakamura S (1996) Thiamine therapy in Alzheimer’s disease. Metab Brain Dis 11(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Munoz FJ, Opazo C, Gil-Gomez G, Tapia G, Fernandez V, Valverde MA, Inestrosa NC (2002) Vitamin E but not 17beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J Neurosci 22(8):3081–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A, Hrabinova M, Soukup O, Bukum N, Jost P, Muckova L, Kassa J, Malinak D, Andrs M, Kuca K (2015) Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22):8985–9003

    Article  CAS  PubMed  Google Scholar 

  • Osimani A, Berger A, Friedman J, Porat-Katz BS, Abarbanel JM (2005) Neuropsychology of vitamin B12 deficiency in elderly dementia patients and control subjects. J Geriatr Psychiatry Neurol 18(1):33–38

    Article  PubMed  Google Scholar 

  • Pal T, Bhimaneni S, Sharma A, Flora SJS (2020) Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine-triazoles as anti-Alzheimer’s agents. RSC Adv 10(44):26006–26021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal T, Patil P, Sharma A (2021) Synthesis, molecular docking and spectroscopic studies of pyridoxine carbamates as metal chelator. J Mol Struct 1223:128837

    Article  CAS  Google Scholar 

  • Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, Sun X, Zhao L, Yu M, Xu Z, Dong W, Qin Y, Fei G, Zhong C, Xu TL (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133(Pt 5):1342–1351

    Article  PubMed  Google Scholar 

  • Pan X, Chen Z, Fei G, Pan S, Bao W, Ren S, Guan Y, Zhong C (2016) Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer’s disease. Neurosci Bull 32(6):591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP (2021) The role of vitamins in neurodegenerative disease: an update. Biomedicine 9(10):1284

    CAS  Google Scholar 

  • Reynolds EH (2002) Folic acid, ageing, depression, and dementia. BMJ (Clinical research ed) 324(7352):1512–1515

    Article  CAS  PubMed  Google Scholar 

  • Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5(11):949–960

    Article  CAS  PubMed  Google Scholar 

  • Sambon M, Gorlova A, Demelenne A, Alhama-Riba J, Coumans B, Lakaye B, Wins P, Fillet M, Anthony DC, Strekalova T, Bettendorff L (2020) Dibenzoylthiamine has powerful antioxidant and anti-inflammatory properties in cultured cells and in mouse models of stress and neurodegeneration. Biomedicine 8(9):361

    CAS  Google Scholar 

  • Sambon M, Wins P, Bettendorff L (2021) Neuroprotective effects of thiamine and precursors with higher bioavailability: focus on benfotiamine and dibenzoylthiamine. Int J Mol Sci 22(11):5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang Z, Song Q, Cao Z, Deng Y, Zhang L (2022) Design, synthesis, and evaluation of chalcone-vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 37(1):69–85

    Article  CAS  PubMed  Google Scholar 

  • Semba RD (2012) The discovery of the vitamins. Int J Vitam Nutr Res 82(5):310–315

    Article  CAS  PubMed  Google Scholar 

  • Singh YP, Shankar G, Jahan S, Singh G, Kumar N, Barik A, Upadhyay P, Singh L, Kamble K, Singh GK, Tiwari S, Garg P, Gupta S, Modi G (2021) Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer’s disease. Bioorg Med Chem 46:116385

    Article  CAS  PubMed  Google Scholar 

  • Singh YP, Kumar N, Priya K, Chauhan BS, Shankar G, Kumar S, Singh GK, Srikrishna S, Garg P, Singh G, Rai G, Modi G (2022) Exploration of neuroprotective properties of a naturally inspired multifunctional molecule (F24) against oxidative stress and amyloid beta induced neurotoxicity in Alzheimer’s disease models. ACS Chem Neurosci 13(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Starling-Soares B, Carrera-Bastos P, Bettendorff L (2020) Role of the synthetic B1 vitamin sulbutiamine on health. J Nutr Metab 2020:9349063

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Yajima H, Hayashi Y, Minato D, Terasaki S, Tohda C, Matsuya Y (2015) Synthesis of denosomin-vitamin D3 hybrids and evaluation of their anti-Alzheimer’s disease activities. Org Lett 17(23):5910–5913

    Article  CAS  PubMed  Google Scholar 

  • Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N, Xu H, Starkov AA, Bettendorff L, Hushpulian DM, Smirnova NA, Gazaryan IG, Kaidery NA, Wakade S, Calingasan NY, Thomas B, Gibson GE, Dumont M, Beal MF (2018) Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet 27(16):2874–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teponnou GAK, Joubert J, Malan SF (2017) Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy. Open Med Chem J 11:24–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F (2009) Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23(6):1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Tousi B (2015) The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence. Neuropsychiatr Dis Treat 11:311–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnaturi R, Oliveri V, Vecchio G (2016) Biotin-8-hydroxyquinoline conjugates and their metal complexes: exploring the chemical properties and the antioxidant activity. Polyhedron 110:254–260

    Article  CAS  Google Scholar 

  • Wang SW, Yang SG, Liu W, Zhang YX, Xu PX, Wang T, Ling TJ, Liu RT (2016) Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer’s disease. Behav Brain Res 296:109–117

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Patassini S, Begley P, Church S, Waldvogel HJ, Faull RLM, Unwin RD, Cooper GJS (2020) Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem Biophys Res Commun 527(3):676–681

    Article  CAS  PubMed  Google Scholar 

  • Yang SG, Wang WY, Ling TJ, Feng Y, Du XT, Zhang X, Sun XX, Zhao M, Xue D, Yang Y, Liu RT (2010) Alpha-tocopherol quinone inhibits beta-amyloid aggregation and cytotoxicity, disaggregates preformed fibrils and decreases the production of reactive oxygen species, NO and inflammatory cytokines. Neurochem Int 57(8):914–922

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Qiang X, Li Y, Luo L, Xu R, Zheng Y, Cao Z, Tan Z, Deng Y (2017) Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem 71:305–314

    Article  CAS  PubMed  Google Scholar 

  • Zandona A, Lihtar G, Marakovic N, Mis K, Busic V, Gaso-Sokac D, Pirkmajer S, Katalinic M (2020) Vitamin B3-based biologically active compounds as inhibitors of human cholinesterases. Int J Mol Sci 21(21):8088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha Garg .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varma, T., Kamble, P., Kumari, M., Diwakar, V., Garg, P. (2023). Vitamin-Based Derivatives for the Management of Alzheimer’s Disease. In: Sharma, A., Modi, G.P. (eds) Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-6038-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6038-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6037-8

  • Online ISBN: 978-981-99-6038-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation