The Analysis of Phase Synchronisation in the Uniform Scale-Free Hypernetwork

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1880))

  • 267 Accesses

Abstract

Many phenomena in realistic complex systems can be explained by the synchronisation behavior of complex systems, such as cricket chir** in unison. The synchronisation behavior occurring on a hypernetwork can be used to explain the swarming behavior occurring on a multivariate interacting system, such as the synchronised forwarding of group messages. There is a lack of results related to phase synchronization of hypernetwork in the existing studies on the synchronization behavior of hypernetworks. To address this problem, this paper investigates the node-based and hyperedge-based phase synchronisation of a scale-free hypernetwork using the Kuramoto model with the order parameter r as the synchronisation degree indicator. The comparative analysis reveals that the phase synchronisation of the scale-free hypernetwork is related to the uniformity k of the hypernetwork but not to the number of nodes and hyperedges, and the phase synchronisation based on hyperedges is more likely to occur than that based on nodes as the coupling strength increases. In addition, the degree of phase synchronisation of scale-free hypernetworks is related to the number of new_nodes of newly added nodes when the hyperedge grows during the construction of the hypernetwork, which shows that the smaller the new_nodes is, the better the degree of synchronisation of the hypernetwork is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren, H.P., Gao, Y., Huo, L., et al.: Frequency stability in modern power network from complex network viewpoint. Physica A 545, 123558 (2020)

    Google Scholar 

  2. Zhou, B., Ma, X.J., Ma, F.X., Gao, S.J.: Robustness analysis of random hyper-networks based on the internal structure of hyper-edges. AIMS Math. 8(2), 4814–4829 (2023). https://doi.org/10.3934/math.2023239

    Article  MathSciNet  Google Scholar 

  3. Cai, W.X., Liang, F.F., Wang, Y.C., et al.: An innovative approach for constructing a ship** index based on dynamic weighted complex networks. Physica A 578, 126101 (2021)

    Google Scholar 

  4. Walker, T.J.: Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166, 891–894 (1969)

    Google Scholar 

  5. Buck, J.: Synchronous rhythmic flashing of fireflies. II. Q. Rev. Biol. 63, 265–289 (1988)

    Google Scholar 

  6. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronisation: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  7. Rogge, J.A., Aeyels, D.: Existence of partial entrainment and stability of phase locking behavior of coupled oscillators. Prog. Theoret. Phys. 112, 921–942 (2004)

    Google Scholar 

  8. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronisation in populations of coupled oscillators. Physica D. 143, 1–20 (2000)

    Google Scholar 

  9. Winfree, A.T.: The Geometry of Biological Time. Springer, Cham (1980). https://doi.org/10.1007/978-3-662-22492-2

  10. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Cham (1984). https://doi.org/10.1007/978-3-642-69689-3

  11. Wang, X.F., Chen, G.: Synchronisation in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circ. Syst. Part I: Fundam. Theory Appl. 49, 54–62 (2002)

    Google Scholar 

  12. Rodrigues, F.A., Peron, T., Ji, P., et al.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)

    Google Scholar 

  13. Lehnert, J.: Synchronisation in complex networks. In: Controlling Synchronization Patterns in Complex Networks. Springer Theses. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25115-8_3

  14. Yamir, M., Amallo, F.P.: Synchronisation of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68, 603 (2004)

    Google Scholar 

  15. Chen, G.R.: Exploring Higher-Order Topologies of Complex Networks and Applications. Chinese Institute of Command and Control, Bei**g (2021)

    Google Scholar 

  16. Federico, B., Giulia, C., Iacopo, I., et al.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Google Scholar 

  17. Sinan, G.A., Cliff, J., Carlos, O.M., et al.: Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 9(1), 519–535 (2020)

    Google Scholar 

  18. Wang, J.W., Rong, L.L., Deng, Q.H., et al.: Evolving hypernetwork model. Eur. Phys. J. B 77(4), 493–498 (2010)

    Google Scholar 

  19. Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality and clustering in complex hypernetworks. Physica A 364, 581–594 (2006)

    Google Scholar 

  20. Suo, Q., Guo, J.L.: The structure and dynamics of hypernetworks. Syst. Eng. Theory Pract. 37(03), 720–734 (2017)

    Google Scholar 

  21. Hu, F., Zhao, H.X., He, J.B., et al.: An evolving model for hypergraph-structure-based scientific collaboration networks. Acta Physica Sinica 62(19), 547–554 (2013)

    Google Scholar 

  22. Hu, F., Liu, M., Zhao, J., et al.: Analysis and application of the topological properties of protein complex hypernetworks. Complex Syst. Complexity Sci. 15(04), 31–38 (2018)

    Google Scholar 

  23. Luo, H.X., Zhao, H.X., **ao, Y.Z., et al.: Topology characteristics and robustness analysis of bus hypernetwork based on hypergraph. J. Southwest Univ. Nat. Sci. Ed. 43(10), 181–191 (2021)

    Google Scholar 

  24. Irving, D., Sorrentino, F.: Synchronisation of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86 (2012)

    Google Scholar 

  25. Anwar, S., Rakshit, S., Ghosh, D., et al.: Stability of intralayer synchronisation in dynamic multilayer hypernetwork with generic coupling functions. Phys. Rev. E 105 (2021)

    Google Scholar 

  26. Rakshit, S., Bera, B.K., Ghosh, D.: Invariance and stability conditions of interlayer synchronisation manifold. Phys. Rev. E 101(1), 012308 (2020)

    Article  Google Scholar 

  27. Sorrentino, F.: Synchronisation of hypernetworks of coupled dynamical systems. New J. Phys. 14(3), 33035–33058(24) (2012)

    Google Scholar 

  28. Wu, Z.Y., Duan, J.Q., Fu, X.C.: Synchronisation of an evolving complex hypernetwork. Appl. Math. Model. 38(11–12), 2961–2968 (2014)

    Google Scholar 

  29. Rakshit, S., Bera, B.K., Ghosh, D.: Synchronisation in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98, 032305 (2018)

    Google Scholar 

  30. Berge, C., Minieka, E.: Graph and Hypergraph North Holland, pp. 389–413. North-Holland Publishing Company, Amsterdam (1973)

    Google Scholar 

  31. Berge, C., Sterboul, F.: Equipartite colorings in graphs and hypergraphs. J. Comb. Theory Ser. B, 22(2), 97–113 (1977)

    Google Scholar 

  32. Bretto, A.: Hypergraph Theory. Mathematical Engineering. Springer, New York (2013). https://doi.org/10.1007/978-3-319-00080-0

  33. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (eds.) International Symposium on Mathematical Problems in Theoretical Physics. LNP, vol. 39, pp. 420–422. Springer, Heidelberg (1975). https://doi.org/10.1007/BFb0013365

  34. Ma, X.J., Zhao, H.X.: Cascading failure analysis in hypernetwork based on the hypergraph. Acta Phys. Sin. 65(08), 374–383 (2016)

    Google Scholar 

  35. Hu, F.: Research on the Structure, Model and Application of Complex Hypernetwork. Shaanxi Normal University, Wuhan (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ujuan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, J., Ma, X., Ma, F., Zhou, B., Yu, W. (2023). The Analysis of Phase Synchronisation in the Uniform Scale-Free Hypernetwork. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5971-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5970-9

  • Online ISBN: 978-981-99-5971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation