Nano-structured Materials in Additive Manufacturing: Synthesis, Properties, and Applications

  • Chapter
  • First Online:
Practical Implementations of Additive Manufacturing Technologies

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 364 Accesses

Abstract

Nano-structured materials have extensive applications in electronics, defence, automotive, aerospace, space. Some of the distinct properties of nanomaterials such as excellent strength, ductility, wear resistance encourages the application in structural domain. Additive manufacturing, also interpreted as 3D printing is a cost-effective fabrication route through layer-by-layer deposition of metal. The method can produce the final product with little or no machining requirement, and the process can be tailored to achieve the bulk product with desired properties. Several nanomaterials synthesis routes used in additive manufacturing processes, major advantages and challenges of introduction of nanomaterials, properties of fabricated component and applications will be discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patra A (2022) Oxide dispersion strengthened refractory alloys. CRC Press, Boca Raton, FL and Abingdon, Oxon

    Book  Google Scholar 

  2. Strondl A, Lyckfeldt O, Brodin H, Ackelid U (2015) Characterization and control of powder properties for additive manufacturing. JOM 67:549–554

    Article  Google Scholar 

  3. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in Vivo. Int J Mol Sci 16:5517–5527

    Article  Google Scholar 

  4. Bishop GW, Warden JES, Kadimisetty K, Rusling JF (2016) 3D-printed bioanalytical devices. Nanotechnology 27:284002

    Article  Google Scholar 

  5. Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH (2018) 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol 1078:15–28

    Article  Google Scholar 

  6. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B: Eng 143:172–196

    Article  Google Scholar 

  7. Han Y, Wang F, Wang H, Jiao X, Chen D (2018) High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions. Compos Sci Technol 154:104–109

    Article  Google Scholar 

  8. Sui X, Downing JR, Hersam MC, Chen J (2021) Additive manufacturing and applications of nanomaterial-based sensors. Mater Today 48:135–154

    Article  Google Scholar 

  9. Li BL, Setyawati MI, Chen L, **e J, Ariga K, Lim CT, Garaj S, Leong DT (2017) Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for Drug delivery. ACS Appl Mater Interfaces 9(18):15286–15296

    Article  Google Scholar 

  10. Tan CT, Cao XH, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    Article  Google Scholar 

  11. Chimene D, Alge DL, Gaharwar AK (2015) Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27:7261–7284

    Article  Google Scholar 

  12. Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF (2009) Ultraflat graphene. Nature 462:339–341

    Article  Google Scholar 

  13. Dong Y, Wu ZS, Ren W, Cheng HM, Bao X (2017) Graphene: a promising 2D material for electrochemical energy storage. Sci Bull 62(10):724–740

    Article  Google Scholar 

  14. Wang X, Weng Q, Yang Y, Bando Y, Golberg D (2016) Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem Soc Rev 45:4042–4073

    Article  Google Scholar 

  15. Shen S, Liu M, Li T, Lin S, Mo R (2017) Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 5:1367–1381

    Article  Google Scholar 

  16. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem Soc Rev 45:2308–2326

    Article  Google Scholar 

  17. Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21(15):3562–3569

    Article  Google Scholar 

  18. Liu J, Essner J, Li J (2010) Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem Mater 22:5022–5030

    Article  Google Scholar 

  19. Liu S, Tang ZR, Sun Y, Colmenares JC, Xu YJ (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053

    Article  Google Scholar 

  20. Zhao H, Lei Y (2020) 3D Nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater 10(28):2001460

    Article  Google Scholar 

  21. Tiwari JN, Tiwari RN, Lin KL (2010) Synthesis of Pt nanopetals on highly ordered silicon nanocones for enhanced methanol electrooxidation activity. ACS Appl Mater Interfaces 2(8):2231–2237

    Article  Google Scholar 

  22. Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6(1–4):3–14

    Article  Google Scholar 

  23. McNamara K, Tofail SAM (2017) Nanoparticles in biomedical applications. Adv Phys X 2(1):54–88

    Google Scholar 

  24. Ramos AP (2017) Biomedical applications of nanotechnology. Biophys Rev 9(2):79–89

    Article  Google Scholar 

  25. Velu R, Calais T, Jayakumar A, Raspall FA (2020) Comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials (Basel) 13(1):92

    Article  Google Scholar 

  26. Eriksson P, Tal AA, Skallberg A, Brommesson C, Hu Z, Boyd RD, Olovsson W, Fairley N, Abrikosov IA, Zhang X, Uvdal K (2018) Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep 8(1):6999

    Article  Google Scholar 

  27. Wu S, Weng Z, Liu X, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24(35):5464–5481

    Article  Google Scholar 

  28. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today 22(12):1825–1834

    Article  Google Scholar 

  29. Zhang YT, Nayak R, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645

    Article  Google Scholar 

  30. Singh D, Singh S, Sahu J, Srivastava S, Singh MR (2016) Ceramic nanoparticles: recompense, cellular uptake and toxicity concerns. Artif Cells Nanomed Biotechnol 44(1):401–409

    Article  Google Scholar 

  31. Han J, Zhao D, Li D, Wang X, ** Z, Zhao K (2018) Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel) 10(1):31

    Google Scholar 

  32. Singh J, Singh G, Pandey PM (2021) Additive manufacturing of functionalized nanomaterials for the modern health care industry. In: Singh S, Hussain CM (eds) Micro and nano technologies. Additive manufacturing with functionalized nanomaterials. Elsevier, pp 55–85

    Google Scholar 

  33. Kumar N, Ray SS (2018) Synthesis and functionalization of nanomaterials, vol 277. Springer International Publishing, pp 15–55

    Google Scholar 

  34. Hales S, Tokita E, Neupane R, Ghosh U, Elder B, Wirthlin D, Kong YL (2020) 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology 31(17):172001

    Article  Google Scholar 

  35. Martina F, Mehnen J, Williams SW, Colegrove P, Wang F (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol 212:1377–1386

    Article  Google Scholar 

  36. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  37. Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52:635–657

    Article  Google Scholar 

  38. Pikul JH, Zhang HG, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732

    Article  Google Scholar 

  39. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  40. Kudryashova O, Lerner M, Vorozhtsov A, Sokolov S, Promakhov V (2021) Review of the problems of additive manufacturing of nanostructured high-energy materials. Materials 14(23):7394

    Article  Google Scholar 

  41. Comet M, Martin C, Schnell F, Spitzer D (2019) Nanothermites: a short review. Factsheet for experimenters, present and future challenges. Prop Explos Pyrotech 44:18–36

    Google Scholar 

  42. Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A (2010) Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos Pyrotech 35:226–232

    Article  Google Scholar 

  43. Crane NB, Wilkes J, Sachs E, Allen SM (2006) Improving accuracy of powder-based SFF processes by metal deposition from a nanoparticle dispersion. Rapid Prototyp J 12(5):266–274

    Article  Google Scholar 

  44. Bai JG, Creehan KD, Kuhn HA (2007) Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing. Nanotechnology 18:185701–185705

    Article  Google Scholar 

  45. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19(5):353–364

    Article  Google Scholar 

  46. Lao SC, Kan MF, Lam CK, Chen DZ, Koo JH, Moon T, Londa M, Takatsuka T, Kuramoto E, Wissler G, Pilato L, Luo ZP (2010) Polyamide 11-carbon nanotubes nanocomposites: processing, morphological, and property characterization. In: Twenty-first international SFF symposium–an additive manufacturing conference. Austin, TX, USA, pp 451–467

    Google Scholar 

  47. Kim NP, Cho D, Zielewski M (2019) Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method. Ceram Int 45(2):2351–2360

    Article  Google Scholar 

  48. Tseng JW, Liu CY, Yen YK, Belkner J, Bremicker T, Liu BH, Sun TJ, Wang AB (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221

    Article  Google Scholar 

  49. Zhou Z, Salaoru I, Morris P, Gibbons GJ (2018) Additive manufacturing of heat-sensitive polymer melt using a pellet-fed material extrusion. Addit Manuf 24:552–559

    Google Scholar 

  50. Kumar P, Yadav AK, Joshi AG, Bhattacharyya D, Jha SN, Pandey PC (2018) Influence of Li co-do** on structural property of sol–gel derived terbium doped zinc oxide nanoparticles. Mater Charact 142:593–601

    Article  Google Scholar 

  51. Kumar P, Kumar R (2021) Synthesis process of functionalized ZnO nanostructure for additive manufacturing: a state-of-the-art review. In: Singh S, Hussain CM (eds) Micro and nano technologies, additive manufacturing with functionalized nanomaterials. Elsevier, pp 135–153

    Google Scholar 

  52. Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R, Farzaneh K, Mohseni M, Ghanbari H (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 69:1248–1255

    Article  Google Scholar 

  53. Unnithan AR, Arathyram RS, Kim CS (2015) Electrospinning of polymers for tissue engineering. In: Thomas S, Grohens Y, Ninan N (eds) Nanotechnology applications for tissue engineering, pp 45–55

    Google Scholar 

  54. Asran AS, Henning S, Michler GH (2010) Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer 51(4):868–876

    Article  Google Scholar 

  55. Xue Y, Ravishankar P, Zeballos MA, Sant V, Balachandran K, Sant S (2020) Valve leaflet-inspired elastomeric scaffolds with tunable and anisotropic mechanical properties. Polym Adv Technol 31:94–106

    Article  Google Scholar 

  56. Bajaj NS, Joshi RA (2021) Energy materials: synthesis and characterization techniques. In: Dhoble SJ, Kalyani NT, Vengadaesvaran B, Arof AK (eds) Energy materials, pp 61–82

    Google Scholar 

  57. Romao CP, Miller KJ, Whitman CA, White MA, Marinkovic BA (2013) Negative thermal expansion (Thermomiotic) materials. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, 2nd ed, pp 127–151

    Google Scholar 

  58. Lima Tenório MK, Gómez Pineda EA, Ahmad NM, Fessi H, Elaissari A (2015) Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm 493:313–327

    Article  Google Scholar 

  59. Wu W, Jiang CZ, Roy VAL (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8:19421–19474

    Article  Google Scholar 

  60. Vaseghi Z, Nematollahzadeh A (2020) Nanomaterials types, synthesis, and characterization. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Green synthesis of nanomaterials for bioenergy applications, pp 23–82 (2020).

    Google Scholar 

  61. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Micro and nano technologies, synthesis of inorganic nanomaterials. Woodhead Publishing, pp 121–139

    Google Scholar 

  62. Su SS, Chang I (2018) Review of production routes of nanomaterials. In: Brabazon D, Pellicer E, Zivic F, Sort J, Baró MD, Grujovic NK, Choy L (eds) Commercialization of nanotechnologies–a case study approach. Springer, Cham, pp 15–29

    Google Scholar 

  63. Ashik UPM, Kudo S, Hayashi J (2018) An overview of metal oxide nanostructures. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Micro and nano technologies, synthesis of inorganic nanomaterials. Woodhead Publishing, pp 19–57

    Google Scholar 

  64. Li H, Yang BS (2019) Model evaluation of particle breakage facilitated process intensification for Mixed-Suspension-Mixed-Product-Removal (MSMPR) crystallization. Chem Eng Sci 207:1175–1186

    Article  Google Scholar 

  65. Sagadevan S, Chowdhury ZZ, Rafique RF (2018) Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method. Mat. Res. 21(2):e20160533

    Article  Google Scholar 

  66. Adam RE,Pozina G, Willander M, Nur O (2018) Photonics and nanostructures-fundamentals and applications, synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH 32:11–18

    Google Scholar 

  67. Vinosha PA, Mely LA, Jeronsia JE, Raja K, Tamilarsi DQS, Fernandez AC, Krishnan S, Das SJ (2016) Investigation of optical, electrical and magnetic properties of cobalt ferrite nanoparticles by naive co-precipitation technique. Optik 127(20):9917–9925

    Article  Google Scholar 

  68. Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  Google Scholar 

  69. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  Google Scholar 

  70. Barzilai S, Hayun S (2015) Mechanical alloying and thermal analysis of Ta–Ti alloys. J Mater Sci 50:6833–6838

    Article  Google Scholar 

  71. Khimich MA, Prosolov KA, Mishurova T, Evsevleev S, Monforte X, Teuschl AH, Slezak P, Ibragimov EA, Saprykin AA, Kovalevskaya ZG, Dmitriev AI, Bruno G, Sharkeev YP (2021) Advances in laser additive manufacturing of Ti–Nb alloys: from nanostructured powders to bulk objects. Nanomaterials 11:1159

    Article  Google Scholar 

  72. Wilms MB, Rittinghaus SK, Goßling M, Gökce B (2023) Additive manufacturing of oxide-dispersion strengthened alloys: materials, synthesis and manufacturing. Prog Mater Sci 133:101049

    Article  Google Scholar 

  73. Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Nishida T, Fujiwara M, Asabe K (1993) Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel. J Nucl Mater 204:74–80

    Article  Google Scholar 

  74. Lázár K, Varga LK, Kis VK, Fekete T, Klencsár Z, Stichleutner S, Szabó L, Harsányi I (2018) Electric explosion of steel wires for production of nanoparticles: reactions with the liquid media. J Alloys Compd 763:759–770

    Article  Google Scholar 

  75. Gurovich VT, Grinenko A, Krasik YE, Felsteiner J (2004) Simplified model of underwater electrical discharge. Phys Rev 69:036402

    Google Scholar 

  76. Kotov YA (2009) The electrical explosion of wire: a method for the synthesis of weakly aggregated nanopowders. Nanotechnol Russ 4(7–8):415–424

    Article  Google Scholar 

  77. Peng C, Wang J, Zhou N, Sun G (2016) Fabrication of nanopowders by electrical explosion of a copper wire in water. Curr Appl Phys 16(3):284–287

    Article  Google Scholar 

  78. Kotov YA, Azarkevich EI, Medvedev AI, Murzakaev AM, Kuznetsov VL, Samatov OM, Demina TM, Timoshenkova OR, Shtoltz AK (2007) Iron oxide nanopowders prepared by the electroexplosion of wire. Inorg Mater 43:633–637.

    Google Scholar 

  79. Abdelkader EM, Jelliss PA, Buckner SW (2015) Metal and metal carbide nanoparticle synthesis using electrical explosion of wires coupled with epoxide polymerization cap**. Inorg Chem 54(12):5897–5906

    Article  Google Scholar 

  80. Gromov AA, Barth UF, Teipel U (2006) Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: characterisation and reactivity with air and water. Powder Technol 164(2):111–115

    Article  Google Scholar 

  81. Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K (2002) Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin Solid Films 407(1–2):109–113

    Article  Google Scholar 

  82. Hokamoto K, Wada N, Tomoshige R, Kai S, Ujimoto Y (2009) Synthesis of TiN powders through electrical wire explosion in liquid nitrogen. J Alloys Compd 485(1–2):573–576

    Article  Google Scholar 

  83. Tanaka S, Bataev I, Oda H, Hokamoto K (2018) Synthesis of metastable cubic tungsten carbides by electrical explosion of tungsten wire in liquid paraffin. Adv Powder Technol 29(10):2447–2455

    Article  Google Scholar 

  84. Kumar LS, Chakravarthy SR, Verma R, Jayaganthan R, Sarathi R, Srinivasan A (2020) Synthesis of multiphase binary eutectic Al–Mg alloy-nanoparticles by electrical wire explosion technique for high-energy applications, its characterisation and size-dependent thermodynamic and kinetic study. J Alloys Compd 838:155630

    Article  Google Scholar 

  85. Sato Y, Suematsu H, Sarathi R, Kikuchi T, Sasaki T, Tokoi Y, Suzuki T, Nakayama T, Niihara K (2015) Preparation of palladium nanoparticles and a grain-size determining equation of pulsed wire discharge in N2, Ar, and He ambient gasses. Jpn J Appl Phys 54:045002

    Article  Google Scholar 

  86. Sarathi R, Sindhu TK, Chakravarthy SR, Sharma A, Nagesh KV (2009) Generation and characterization of nano-tungsten particles formed by wire explosion process. J Alloys Compd 475:658–663

    Article  Google Scholar 

  87. Lin TC, Cao C, Sokoluk M, Jiang L, Wang X, Schoenung JM, Lavernia EJ, Li X (2019) Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat Commun 10:4124

    Article  Google Scholar 

  88. Qu M, Guo Q, Escano LI, Yuan J, Hojjatzadeh SMH, Clark SJ, Fezzaa K, Sun T, Chen L (2022) Controlling melt flow by nanoparticles to eliminate surface wave induced surface fluctuation. Addit Manuf 59(Part A):103081

    Google Scholar 

  89. Ma C, Chen L, Cao C, Li X (2017) Nanoparticle-induced unusual melting and solidification behaviours of metals. Nat Commun 8:14178

    Article  Google Scholar 

  90. Gao C, Wu W, Shi J, **ao Z, Akbarzadeh AH (2020) Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Addit Manuf 34:101378

    Google Scholar 

  91. Wang M, Song B, Wei Q, Shi Y (2019) Improved mechanical properties of AlSi7Mg/nano–SiCp composites fabricated by selective laser melting. J Alloys Compd 810:151926

    Article  Google Scholar 

  92. Tan Q, Zhang J, Sun Q, Fan Z, Li G, Yin Y, Liu Y, Zhang MX (2020) Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater 196:1–16

    Article  Google Scholar 

  93. Tan Z, Li J, Zhang Z (2021) Experimental and numerical studies on fabrication of nanoparticle reinforced aluminum matrix composites by friction stir additive manufacturing. J Mater Res Technol 12:1898–1912

    Article  Google Scholar 

  94. Kaldre I, Bojarevičs A, Grants I, Beinerts T, Kalvāns M, Milgrāvis M, Gerbeth G (2016) Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation. Acta Mater 118:253–259

    Article  Google Scholar 

  95. Buendía CD, Frömel F, Wilms MB, Streubel R, Tenkamp J, Hupfeld T, Nachev M, Gökce E, Weisheit A, Barcikowski S, Walther F, Schleifenbaum JH, Gökce B (2018) Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Mater Des 154:360–369

    Article  Google Scholar 

  96. Qu M, Guo Q, Escano LI, Nabaa A, Fezzaa K, Chen L (2022) Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing. Addit Manuf 60(Part A):103242

    Google Scholar 

  97. Ben D, Yang H, Gao J, Yang B, Dong Y, Liu X, Wang X, Duan Q, Zhang P, Zhang Z (2022) Rapid microstructure homogenization of a laser melting deposition additive manufactured Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy by electropulsing. Materials 15(20):7103

    Google Scholar 

  98. Noell PJ, Rodelas JM, Ghanbari ZN, Laursen CM (2020) Microstructural modification of additively manufactured metals by electropulsing. Addit Manuf 33:101128

    Google Scholar 

  99. Waryoba D, Islam Z, Reutzel T, Haque A (2020) Electro-strengthening of the additively manufactured Ti–6Al–4V alloy. Mater Sci Eng A 798:140062

    Article  Google Scholar 

  100. Gao JB, Ben DD, Yang HJ, Meng LX, Ji HB, Lian DL, Chen J, Yi JL, Wang L, Li P, Zhang ZF (2021) Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy. J Alloys Compd 875:160044

    Article  Google Scholar 

  101. Zhu RF, Liu JN, Tang GY, Shi SQ, Fu MW, Tse ZTH (2014) The improved superelasticity of NiTi alloy via electropulsing treatment for minutes. J Alloys Compd 584:225–231

    Google Scholar 

  102. Delobelle V, Chagnon G, Favier D, Alonso T (2016) Study of electropulse heat treatment of cold worked NiTi wire: from uniform to localised tensile behavior. J Alloys Compd 227:244–250

    Google Scholar 

  103. Li GY, Chen D, Wang S, Tong YX, Jiang YB, Jiang FC (2022) Tailoring microstructure and martensitic transformation of selective laser melted Ti49.1Ni50.9 alloy through electropulsing treatment. Mater Today Commun 31:103437

    Google Scholar 

  104. Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, Kim GY, Meang EH, Hong JS, Kim SH, Koh SB, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SSA, Yun HI, Kim MK (2014) Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomedicine 15(9)(Suppl 2):109–26

    Google Scholar 

  105. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  106. Hu G, Kang J, Ng LWT, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T (2018) Functional inks and printing of two-dimensional materials. Chem Soc Rev 47:3265–3300

    Article  Google Scholar 

  107. Haley JC, Schoenung JM, Lavernia EJ (2019) Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater Sci Eng A 761:138052

    Article  Google Scholar 

  108. Pinkerton AJ, Li L, Lau WS (2003) Effects of powder geometry and composition in coaxial laser deposition of 316L steel for rapid prototy**. CIRP Ann 52(1):181–184

    Article  Google Scholar 

  109. Hopkinson N (2006) Production economics of rapid manufacture. In: Hopkinson N, Hague R, Dickens P (eds) Rapid manufacturing: an industrial revolution for the digital age. Wiley, Hoboken, NJ

    Google Scholar 

  110. Roy NK, Foong CS, Cullinan MA (2018) Effect of size, morphology, and synthesis method on the thermal and sintering properties of copper nanoparticles for use in microscale additive manufacturing processes. Addit Manuf 21:17–29

    Google Scholar 

  111. Creran B, Li X, Duncan B, Kim CS, Moyano DF, Rotello VM (2014) Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl Mater Interfaces 6:19525–19530

    Article  Google Scholar 

  112. Song JH, Kim YT, Cho S, Song WJ, Moon S, Park CG, Park S, Myoung JM, Jeong U (2017) Surface-embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures. Adv Mater 29:1702625

    Article  Google Scholar 

  113. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  Google Scholar 

  114. Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401

    Article  Google Scholar 

  115. Saleh MS, Li J, Park J, Panat R (2018) 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78

    Google Scholar 

  116. Ma C, Wang R, Tetik H, Gao S, Wu M, Tang Z, Lin D, Ding D, Wu W (2019) Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy 66:104124

    Article  Google Scholar 

  117. Chen B, Das SR, Zheng W, Zhu B, Xu B, Hong S, Sun C, Wang X, Wu Y, Claussen JC (2017) Inkjet printing of single-crystalline Bi2Te3 thermoelectric nanowire networks. Adv Electron Mater 3(4):1600524

    Article  Google Scholar 

  118. Roopavath UK, Soni R, Mahanta U, Deshpande AS, Rath SN (2019) 3D printable SiO2 nanoparticle ink for patient specific bone regeneration. RSC Adv 9:23832–23842

    Article  Google Scholar 

  119. Liu D, Jiang P, Li X, Liu J, Zhou L, Wang X, Zhou F (2020) 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem Eng J 397:125392

    Article  Google Scholar 

  120. Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D (2018) Emerging opportunities for nanotechnology to enhance water security. Nature Nanotech 13:634–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patra, A. (2024). Nano-structured Materials in Additive Manufacturing: Synthesis, Properties, and Applications. In: Rajendrachari, S. (eds) Practical Implementations of Additive Manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5949-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5949-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5948-8

  • Online ISBN: 978-981-99-5949-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation