A Stacked Autoencoder Based Meta-Learning Model for Global Optimization

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1869))

Included in the following conference series:

  • 433 Accesses

Abstract

As optimization problems continue to become more complex, previous studies have demonstrated that algorithm performance varies depending on the specific problem being addressed. Thus, this study proposes an adaptive data-driven recommendation model based on the stacked autoencoder. This approach involves the use of a meta-learning autoencoder that is stacked with multiple supervised autoencoders, generating deep meta-features. Then the proper algorithms are identified to address the new problems. To verify the feasibility of this proposed model, experiments are conducted using benchmark functions. Experimental results indicate that both instance-based and model-based meta-learners are well suited to the advanced model, and the performance is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, X., et al.: Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective. Neural Comput. Appl. 32(6), 1789–1809 (2018)

    Article  Google Scholar 

  2. Wolpert, D.H.a.M., W.G.: No free lunch theorems for optimization.pdf. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Google Scholar 

  3. Kerschke, P., et al.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  4. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44(1), 117–130 (2015)

    Article  Google Scholar 

  5. Smith-Miles, K.A.: IEEE. Towards Insightful Algorithm Selection For Optimisation Using Meta-Learning Concepts. International Joint Conference on Neural Networks, pp. 4118–4124. Hong Kong, PEOPLES R CHINA (2008)

    Google Scholar 

  6. Chu, X., et al.: Adaptive recommendation model using meta-learning for population-based algorithms. Inf. Sci. 476, 192–210 (2019)

    Article  Google Scholar 

  7. Dantas, A.L., Pozo, A.T.R.: IEEE. A meta- learning algorithm selection approach for the quadratic assignment problem. IEEE Congress on Evolutionary Computation (IEEE CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI), pp. 1284–1291. Rio de Janeiro, BRAZIL (2018)

    Google Scholar 

  8. Cui, C., et al.: A recommendation system for meta-modeling: A meta-learning based approach. Expert Syst. Appl. 46, 33–44 (2016)

    Article  Google Scholar 

  9. Peng, Y.H., et al.: Improved dataset characterisation for meta-learning (2002)

    Google Scholar 

  10. Chu, X., et al.: Empirical study on meta-feature characterization for multi-objective optimization problems. Neural Comput. Appl. 34(19), 16255–16273 (2022)

    Article  Google Scholar 

  11. Rice, J.R.: The Algorithm Selection Problem (1976)

    Google Scholar 

  12. Khan, I., et al.: A literature survey and empirical study of meta-learning for classifier selection. IEEE Access 8, 10262–10281 (2020)

    Article  Google Scholar 

  13. Wang, G.T., et al.: A generic multilabel learning-based classification algorithm recommendation method. ACM Trans. Knowl. Discovery Data 9(1) (2014)

    Google Scholar 

  14. Rossi, A.L.D., et al.: MetaStream: a meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing 127, 52–64 (2014)

    Article  Google Scholar 

  15. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: The algorithm selection problem on the continuous optimization domain. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis, pp. 75–89. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32378-2_6

    Chapter  Google Scholar 

  16. Takahashi, R., et al.: Recommendation of web service selection algorithm based on web application review. IEEE-Region-10 Conference (IEEE TENCON), pp. 1882–1887. IEEE Reg 10, SOUTH KOREA (2018)

    Google Scholar 

  17. Degroote, H.: Online Algorithm Selection. 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5173–5174. Melbourne, AUSTRALIA (2017)

    Google Scholar 

  18. Misir, M., Gunawan, A., Vansteenwegen, P.: Algorithm selection for the team orienteering problem. In: 22nd European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP) Held as Part of EvoStar Conference. 13222, pp. 33–45. Madrid, SPAIN (2022)

    Google Scholar 

  19. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989)

    Article  Google Scholar 

  20. Liu, G., Bao, H., Han, B.: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis. Math. Probl. Eng. 2018, 1–10 (2018)

    Google Scholar 

  21. Wang, L., et al.: A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25(3), 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  22. Chen, Y., et al.: deep learning-based classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  23. Tao, S., et al.: Bearing fault diagnosis method based on stacked autoencoder and softmax regression. In: 2015 34th Chinese Control Conference (CCC), pp. 6331–6335. IEEE (2015)

    Google Scholar 

  24. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2009)

    Article  Google Scholar 

  25. Ferrari, D.G., de Castro, L.N.: Clustering algorithm selection by meta-learning systems: a new distance-based problem characterization and ranking combination methods. Inf. Sci. 301, 181–194 (2015)

    Article  Google Scholar 

  26. Tang, K., et al.: Benchmark functions for the CEC’2008 special session and competition on large scale global optimization. Nat. Inspired Comput. Appl. Lab. USTC, China 24, 1–18 (2007)

    Google Scholar 

  27. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  28. Cheng, R., **, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2014)

    Article  Google Scholar 

  29. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  30. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992)

    Google Scholar 

  31. Noel, M.M.: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum. Appl. Soft Comput. 12(1), 353–359 (2012)

    Article  Google Scholar 

  32. Sallam, K.M., et al.: Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  33. Zhu, G.-Y., Zhang, W.-B.: Optimal foraging algorithm for global optimization. Appl. Soft Comput. 51, 294–313 (2017)

    Article  Google Scholar 

  34. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)

    Google Scholar 

  35. Tian, Y., et al.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  36. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  37. Gulli, A.: and S. Packt Publishing Ltd, Pal. Deep learning with Keras (2017)

    Google Scholar 

  38. Neave, H.R., Worthington, P.L.: Distribution-Free Tests. Unwin Hyman, (1988)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (No. 71971142 and 71501132), the Natural Science Foundation of Guangdong Province (No. 2022A1515010278 and 2021A1515110595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Pang, Y., Li, S., Qu, Y., Wang, Y., Chu, X. (2023). A Stacked Autoencoder Based Meta-Learning Model for Global Optimization. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1869. Springer, Singapore. https://doi.org/10.1007/978-981-99-5844-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5844-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5843-6

  • Online ISBN: 978-981-99-5844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation