Mutation Work on Other Ornamental Plants

  • Chapter
  • First Online:
Role of Mutation Breeding In Floriculture Industry
  • 142 Accesses

Abstract

The chapter covers mutation work (mutagens, working dose, mutants) carried out throughout the world on approximately 120 ornamental crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou Dahab AM, Heikal AAM, Taha LS, Gabr AMM, Metwally SA, Ali AAR (2017a) In vitro mutagenesis induction in Eustoma grandiflorum plant using gamma radiation. J Environ Sci Technol 10:175–185. https://doi.org/10.3923/jest.2017.175.185. https://scialert.net/abstract/?doi=jest.2017.175.185

    Article  CAS  Google Scholar 

  • Abou Dahab AM, Tarek AA, Amaal AMH, Taha LS, Gabr AMM, Metwally SA, Awatef IAR (2017b) Propagation and chemical mutgenic induction of Eustoma grandiflorum plant using tissue culture technique. Asian J Appl Sci Technol 1(9):496–511. Online ISSN: 2456-883X. www.ajast.net

    Google Scholar 

  • Abou-Dahab A-DM, Mohammed TA, Heikel AA, Taha L, Gabr AMM, Metwally S, Ali AIR (2019) In vitro laser radiation induces mutation and growth in Eustoma grandiflorum plant. Bull Natl Res Centre 43:3. https://doi.org/10.1186/s42269-018-0036-z

    Article  Google Scholar 

  • Abraham V, Desai BM (1977) Induced tetraploidy in a perennial Portulaca mutant. Indian J Hortic 34(3):301–305

    Google Scholar 

  • Abraham V, Desai BM (1978) New induced mutants in Portulaca grandiflora Hook. Mutant Breed Newsl 11:10

    Google Scholar 

  • Affrida AH, Sakinah A, Zaiton A, Mohd Nazir B, Tanaka A, Narumi I, Oono Y, Hase Y (2008) Mutation induction in orchids using ion beams. JAEA Takasaki annual report 2007, p 61

    Google Scholar 

  • Affrida AH, Zaiton A, Shakinah S, Shuhaimi S, Mohamed Najli MY, Mohd Nazir B (2009) Biotechnology-gamma generated new variety of Amaryllis. In: Proceedings of national conference on new crops and bio-resources. The Royale Bintang Resort & Spa Seremban, Negeri Sembilan

    Google Scholar 

  • Agafonova OV, Korochkin LI, Privalov GF (1974) Study of the esterase isoenzymes in various tissues of mutants of Acer negundo L. (in Russian). Plant Breed. Abstract 47: No. 1692

    Google Scholar 

  • Aisyah SI, Marthin Y, Damanik MRM (2015) Improvement of Coleus performance through mutation induction using gamma ray irradiation. J Trop Crop Sci 2:26–32. https://doi.org/10.29244/jtcs.2.1.26-32

    Article  Google Scholar 

  • Aisyah SI, Togatorop ER, Damanik MRM (2017) Physically induced mutation by acute and fractionated irradiation on Coleus spp. Acta Hortic. 1167:227–236. https://doi.org/10.17660/ActaHortic.2017.1167.35

    Article  Google Scholar 

  • Aisyah SI, Saraswati RAM, Yudha YS, Nurcholis W (2022) The diversity of agro morphological characters of Portulaca grandiflorain the MV8 population deriving from recurrent irradiation. Biodiversitas 23:4432–4439. https://doi.org/10.13057/biodiv/d230908

    Article  Google Scholar 

  • Akabane M, Takashima D, Nakaeda K, Yamanake A (1973) On new azalea varieties ‘Kimbunnohana’, ‘Koun’, ‘Kobaruto’ and azaleodendron ‘Akanegumo’. Bull Tochigi Agric Exp Stn 17:119–122

    Google Scholar 

  • Akhar FK, Khadem A, Sharifi A, Nemati Z, Yazdi M, Bagheri A (2016) In vitro mutation induction on TCL explants of Lilium (Lilium spp.) with ethyl methane sulfonate (EMS). J. Biol. Todays World 5(10):177–185. https://doi.org/10.15412/J.JBTW.01051002

    Article  CAS  Google Scholar 

  • Akhund-Zade, Muzaferova RS (1975) Studies of the effectiveness of gamma irradiation of the saffron. Radiobiologiya 15(2):319–322

    CAS  Google Scholar 

  • Alabi OA, Akinbami OA, Ogunwenmo KO, Esan EB (2010) Effects of cigarette tobacco infusion on root regeneration and proliferation of two cultivars of garden croton (Codiaeum variegatum). Asian J Plant Sci 9(2):81–87. https://doi.org/10.3923/ajps.2010.81.87

    Article  Google Scholar 

  • Alkema HY (1974a) Mutatie veredeling bij bolgewassen door middle van radioactive bestraling en andere methoden. Rapport 24. Laborataorium voor Bloembollenonderzoek, Lisse, p 15

    Google Scholar 

  • Alkema HY (1974b) Mutatie veredeling bij bolgewassen door middle van radioactive bestraling en andere methoden. Rapport 24. Laboratorium voor Bloembollenonderzoek, Lisse, pp 13–14

    Google Scholar 

  • Almeida JL, Diniz JDN, Hernandez FFF (2008) Micropropagation of Crossandra infundibuliformis Nees cultivar Mona Wallhead. Rev Bras Hortic Ornam 2:115–122

    Google Scholar 

  • Aloysius S, Purwantoro A, Dewi K, Semiarti E (2017) Improvement of genetic variability in seedlings of Spathoglottis plicataorchids through X-ray irradiation. Biodiversitas 18(1):20–27. https://doi.org/10.13057/biodiv/d180104

    Article  Google Scholar 

  • Alston RE, Sparrow AH (1962) Somatic mutation rates in double and triple heterozygotes of Impatiens balsamia following chronic gamma irradiation. Radiat Bot 1:229–232

    Article  Google Scholar 

  • Amanda S, Berenschot L, Maria I et al (2008) Mutagenesis in Petunia x hybridaVilm. and isolation of a novel morphological mutant. Braz J Plant Physiol 20(2):95–103. https://doi.org/10.1590/S1677-04202008000200002

    Article  Google Scholar 

  • Anandhi S, Rajamani K, Jawaharlal M, Maheshwaran M, Gnanam R (2013a) Colchicine content in induced mutants of glory lily (Gloriosa superba L.). Int J Agric Innov Res 1(6). ISSN (Online) 2319-1473

    Google Scholar 

  • Anandhi S, Rajamani K, Jawaharlal M, Maheshwaran M, Gnanam R (2013b) Correlation and path coefficients in induced mutants of Glory Lily (Gloriosa superba L.). Int J Agric Sci Res 3(4):85–92. ISSN 2250-0057

    Google Scholar 

  • Anastassopoulos E, Keil M (1996) Assessment of natural and induced genetic variation in Alstroemeria using random amplified polymorphic DNA (RAPD) markers. Euphytica 90:235–244

    Article  CAS  Google Scholar 

  • Ando T, Akiyama Y, Yokoi M (1986) Flower colour sports in Saintpaulia cultivars. Sci Hortic 29(1/2):191–197. https://doi.org/10.1016/0304-4238(86)90046-4. ISSN/ISBN: 0304-4238

    Article  Google Scholar 

  • Anjalika MR, Banerjee N, Mandal S (2005) Structural and functional parameters of mating and seed germination in mutants of Catharanthus roseus (Apocynaceae). J Appl Biosci 31(2):145–149

    Google Scholar 

  • Anonymous (1975) Streptocarpus-Versuche. Gartenbauschule Wien-Schonbrunn, Versuchsergebnisse, Heft 11. Gartenbauschule, Wien-Schonbrunn, pp 113–115

    Google Scholar 

  • Anonymous (1977a) List of mutant varieties. Mutat Breed Newsl 9(1):14–17

    Google Scholar 

  • Anonymous (1977b) Manual on mutation breeding (2nd edn). Tech Rep Ser No. 119. IAEA, Vienna, p 288

    Google Scholar 

  • Anonymous (1988) Mutat Breed Newsl (31):8–38

    Google Scholar 

  • Anonymous (1991a) Plant mutation breed for crop improvement. In: Proceedings of FAO/IAEA symposium, Vienna, 1990, 2 vols. IAEA, Vienna

    Google Scholar 

  • Anonymous (1991b) Mutat Breed Newsl (37):18–45

    Google Scholar 

  • Anonymous (2017) Improved varieties of Crossandra and Casuarina. Laxminarayana’s Crossandra Innovation Centre, Villianoor. http://nif.org.in/, http://nif.org.in/innovation/improved-varieties-of-Crossandra-spp-and-Casuarina-spp/928

    Google Scholar 

  • Anonymous (2022) Mutation breeding of Trichocereus cacti using gamma irradiation. Herbalistics. https://herbalistics.com.au

  • Anwar S, Karno K, Kusmiyati F, Herwibawa B (2019) Induced mutation by gamma rays on performance of MV3 Callistephus chinensis at lowland. IOP Conf Ser Earth Environ Sci 518:012066. https://doi.org/10.1088/1755-1315/518/1/012066

    Article  Google Scholar 

  • Anwar S, Karno K, Kusmiyati F, Herwibawa B (2020) Induced mutation by gamma rays on performance of MV3 Callistephus chinensis at lowland. IOP Conf Ser Earth Environ Sci 518:012066. https://doi.org/10.1088/1755-1315/518/1/012066

    Article  Google Scholar 

  • Aravind S, Dhanavel D (2021) Induced physical and chemical mutagenesis on Marigold (Tagetes erecta L.) to determine the lethality, germination and seedling survivability. Int J Bot Stud 6(3):235–237. www.botanyjournals.com. ISSN: 2455-541X

    Google Scholar 

  • Aravind S, Dhanavel D (2022) Germination studies on combined mutagenic treatment employing gamma rays and EMS in African Marigold (Tagetes erecta L.). Indian J Nat Sci 12(70). ISSN: 0976 – 0997

    Google Scholar 

  • Ari E, Djapo H, Mutlu N et al (2015) Creation of variation through gamma irradiation and polyploidization in Vitex agnus-castus L. Sci Hortic 195:74–81. https://doi.org/10.1016/j.scienta.2015.08.039

    Article  CAS  Google Scholar 

  • Ariffin S, Mohamad A, Ratnam W (2012) Technical aspects in understanding effects of gamma irradiation on flower colour changes in Dendrobium Sonia. Journal Sains Nuklear Malaysis 24:91–101

    Google Scholar 

  • Ariffin S, Salleh S, Shamsuddin S, Musa S, Hassan AA (2016) Effects of acute gamma irradiation on Amaryllis ‘Orange Biogamma’. In: R&D seminar 2016: research and development seminar 2016, Bangi, 8–10 Nov 2016, 6p

    Google Scholar 

  • Arisumi T (1973) Morphology and breeding behavior of colchicine-induced polyploid Impatiens spp. L. J Am Soc Hortic Sci 98(6):599–601

    Article  CAS  Google Scholar 

  • Arisumi T (1978) Somatic mutations affecting leaf characteristics of new Guinea impatiens. Hort-Science 13(3, section 2):350

    Google Scholar 

  • Arunyanart S, Chaitrayagun M (2005) Induction of somatic embryogenesis in lotus (Nelumbo nucifera Geartn.). Sci Hortic 105(3):411–420. https://doi.org/10.1016/j.scienta.2005.01.034

    Article  CAS  Google Scholar 

  • Arunyanart S, Soontronyatara S (2002) Mutation in duction by γ and X-ray irradiation in tissue cultured lotus. Plant Cell Tiss Org Cult 70:119–122

    Article  CAS  Google Scholar 

  • Asahira T, Yamagata H, Inagaki H, Osuga S (1974) Isolation and propagation of mutations in Dahlia by in vitro culture. In: Proceedings of a research co-ordination meeting held at Tokai, 30 Sept–4 Oct 1974 organized by the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, pp 1–12

    Google Scholar 

  • Asahira T, Yamagata H, Inagaki M, Osuga S (1975) Isolation and propagation mutations in Dahlia by in vitro culture. In: Improvement of vegetatively propagated plants through induced mutations, Tokai, 1974. IAEA, Vienna, pp 1–23

    Google Scholar 

  • Atak C, Celik O, Acik L (2011) Genetic analysis of Rhododendron mutants using random amplified polymorphic DNA (RAPD). Pak J Bot. 43(2):1173–1182

    CAS  Google Scholar 

  • Atra R, Sutjahjo SH, Purwita A, Sukma D, Rustikawati R, Human S (2014) Induced mutation in Orchid (Spathoglottis plicata Blume) originated from Bengkulu Province. In: International seminar on plant mutation breeding, Jakarta

    Google Scholar 

  • Aurigue F (2019) DOST-PNRI mutant variety: Dracaena ‘Sun Beam’. Philip J Sci 149(S1):11–14. https://doi.org/10.56899/149.S1.02

    Article  Google Scholar 

  • Aurigue F, Lobiano R, Gonzales M et al (2008) Mutation breeding in Philippines Spathoglottis orchids. In: Abst of FAO/IAEA international symposium on induced mutations in plants, Vienna, 12–15 Aug, p 115

    Google Scholar 

  • Ayudhaya PT, Konsanuk S, Vongvanrungrueng A (2022) Effect of acute gamma radiation on survival rate and morphological change from seed of Cosmos sulphureus Cav. Wichcha J 41(1):108–117

    Google Scholar 

  • Badr M, Etman M (1977) Gamma-radiation induced effects on the X1-generation in carnation (Dianthus caryophyllus, L.). Egypt J Genet Cytol 6:32–43

    Google Scholar 

  • Banerjee SK (1967) Effect of gamma radiation on some perennial ornamentals. Indian J Genet Plant Breed 27(3):417–422

    Google Scholar 

  • Banerji BK, Datta SK (1986) Induction of single flower mutant in Hibiscus cv. ‘Alipur Beauty’. J Nucl Agric Biol 15(4):237–240

    Google Scholar 

  • Banerji BK, Datta SK (1988) ‘Anjali’ - a new gamma ray iinduced single flower mutant of Hibiscus. J Nucl Agric Biol 17(2):113–114

    Google Scholar 

  • Barakat MN, El-Sammak H (2011a) In vitro culture and plant regeneration from shoot tip and lateral bud explants of Gypsophila paniculata L. J Med Plant Res 5(15):3351–3358. http://www.academicjournals.org/JMPR. ISSN 1996-0875 ©2011

    Google Scholar 

  • Barakat MN, El-Sammak H (2011b) In vitro mutagenesis, plant regeneration and characterization of mutants via RAPD analysis in Baby’s breath Gypsophila paniculata L. Aust J Crop Sci 5(2):214–222. Retrieved from http://www.cropj.com/barakat_5_2_2011_214_222.pdf

    Google Scholar 

  • Barakat MN, El Shennawy OA, Raslan MR, Esmail NM (2002) In vitro mutation for sunflower (Helianthus annuus L.) breeding. Alexandria J Agric Res 47(3):77–84. ISSN/ISBN: 0044-7250 Accession: 003808230

    Google Scholar 

  • Bashaw EC, Hoff BI (1962) Effects of radiation on apomictic common dallisgrass. Crop Sci 2:501–504

    Article  Google Scholar 

  • Baskaran K, Srinivas KVNS, Kulkarni RN (2013) Two induced macro-mutants of periwinkle with enhanced contents of leaf and root alkaloids and their inheritance. Ind Crop Prod 2013(43):701–703

    Article  Google Scholar 

  • Beaumont D (2013) Tibouchina plant named ‘Blaze of Glory’. US15/530,7772016-08-312017-02-27

    Google Scholar 

  • Benetka V (1987) Induction of compact mutants in Begonia x hiemalis Fotch cultivar Schwabenland. Zahradnict 14:75–80. Cited in: Hort. Abstr. 1988: no. 1013.

    Google Scholar 

  • Bennani F, Rossi-Hassani BD (2001) Seed mutagenesis in Portulaca grandiflora (Hook), INIS-XA–427. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Benslimani N, Khelifi-Slaoui M, Lassel A, Khiar H, Djerrad A, Mansouri B (2011) In vitro radiosensitivity study of Datura Sp seeds for increased alkaloid-producing mutant lines. Adv Environ Biol 381. link.gale.com/apps/doc/A253057788/AONE?u=anon~5c97b7d3&sid=googleScholar&xid=1362b24c

  • Berenschot AS, Zucchi MI, Tulmann-Neto A, Quecini V (2008) Mutagenesis in Petunia hybrida Vilm. and isolation of a novel morphological mutant. Braz J Plant Physiol 20:95–103. https://doi.org/10.1590/S1677-04202008000200002

    Article  Google Scholar 

  • Bergan F, Bergan L (1959) Uber experimentell ausgeloste vegetative Spaltungen und Umlagerungen an chimarischen Klonen, zugleich als Beispiele erfolgreicher Staudenauslese. I. Pelargonium zonale. Ait. ‘Madame Salleron’. Zuchter 29(8):361–374

    Google Scholar 

  • Bergann F (1967a) The relative instability of chimerical clones- the basis of further breeding. In: Stubbe H (ed) Induced mutations and their utilization. Abh. Dtsch. Akad. Wiss, Berlin Kl. Medizin 2, pp 287–300

    Google Scholar 

  • Bergann F (1967b) Mutations-Chimaren: Rohmaterial zuchterischer Weiterbehandlung. Umsch Wiss Tech 67(24):791–797

    Google Scholar 

  • Bergann F, Bergann L (1982) Zur Entwicklungeschichte des Angiospermenblatts. I. Uber Periklinalchimareen bei Peperomia und ihre experimentelle Entmischung und Umlagerung. Biol Zentralbl 101(4):485–502

    Google Scholar 

  • Bhate RH (1999) Mutagenic response in two cultivars of morning glory Ipomoea purpurea (L) Roth. Indian J Genet Plant Breed 59(1):37–45

    CAS  Google Scholar 

  • Bhate RH (2001) Chemically induced floral morphological mutations in two cultivars of Ipomoea purpurea (L.). Roth. Sci Hort 88:133–145. https://doi.org/10.1016/S0304-4238(00)00221-1

    Article  CAS  Google Scholar 

  • Bhattacharjee R (1998) Mutagenic effectiveness and efficiency of gamma rays ethyl methane sulphonate and nitroso-methyl urea in periwinkle, Catharanthus roseus. J Nucl Agric Biol 27(1):61–64

    CAS  Google Scholar 

  • Bhattacharya C (2003) Effect of ethyl methanesulphonate on carnation (Dianthus caryophyllus L.). Environ Ecol 21(2):301–305. ISSN/ISBN: 0970-0420

    CAS  Google Scholar 

  • Bin X, Weijie X, Guangdong W et al (2006) Characteristics of chimeras of Anthurium andraeanum from in vitro mutation. Chin Bull Bot 23:698–702

    Google Scholar 

  • Biswas SC, Biswas AK (2006) Cytogenetic characterization of induced sterility in Ornithogalum virens L. Cytologia (Tokyo) 71:119–123. https://doi.org/10.1508/cytologia.71.119

    Article  Google Scholar 

  • Biswas KK, Mohri T, Kogawara S, Narumi I, Oono Y (2013) Develo** protocol for screening of drought/salt tolerant mutants with ion beam mutagenesis in Populus sp. JAEA Takasaki Annual Report 2011. JAEA, Tokai

    Google Scholar 

  • Boddie J, Whitcomb CE (1978) Plant modification with a mutagenic compound. Research report. Agric Exp Stn, Oklahoma State University, No. P-777:6-7. (Hortic. Abstr., 1980, 50: No. 6358. (concerning Lagerestroemia indica and Maclura pomifera)

    Google Scholar 

  • Bouharmont J, Dabin P (1986a) Somaclonal variation in some cultivars of Fuchsia. In: Semal J (ed) Somaclonal variations and crop improvement. Nijhoff, Dordrecht, pp 257–260

    Chapter  Google Scholar 

  • Bouharmont J, Dabin P (1986b) Application of in vitro cultures for mutation breeding in Fuchsia. In: Nuclear techniques and in vitro culture for plant improvement, Vienna, 1985, pp 339–347

    Google Scholar 

  • Bowen CC, Sparrow AH (1954) Radiosensitivity of several meiotic stages of Lilium. Genetics 39:960

    Google Scholar 

  • Boyarskikh IG, Kulikova AI, Agatova AR, Bakiyanov AI, Florinsky IV (2016) Mutation activity of Lonicera caerulea population in an active fault zone (the Altai Mountains). ar**v:1508.02016 [q-bio.PE]

    Google Scholar 

  • Breider H (1959) Rontgeninduzierte Mutationen bei Vitis, Malus and Cyclamen. Bayer Landwirtsch Jahrb 36:396–401

    Google Scholar 

  • Broerties C, Verboom H (1974) Mutation breeding of Alstroemeria. Euphytica 23:39–44

    Article  Google Scholar 

  • Broertjes C (1968) Mutation breeding of Streptocarpus. Euphytica 16(2):163–167

    Google Scholar 

  • Broertjes C (1969a) Mutation breeding of vegetatively propagated crops. In: G.C., Chisci and G. Haussmann (Editors), Proc. 5th Eucarpia Congress, Milan, 1968. Genet Agrar 23:139–165

    Google Scholar 

  • Broertjes C (1969b) Mutation breeding of Streptocarpus. Euphytica 18:333–339

    Article  Google Scholar 

  • Broertjes C (1970) Mutationszuchtung bei vegetative vermehrbaren Zierpflanzen. Gartenwelt 70(11):266–268

    Google Scholar 

  • Broertjes C (1971) Achimenes. Het verkrijgen van varieteiten door bestraling. Vakbl Bloemisterij 26(34):21

    Google Scholar 

  • Broertjes C (1972a) Mutation breeding of Achimenes. Euphytica 21:48–62

    Article  Google Scholar 

  • Broertjes C (1972b) Improvement of vegetatively propagated plants by ionizing radiation. In: Induced Mutations and Plant Improvement. IAEA, Vienna, pp 293–299

    Google Scholar 

  • Broertjes C (1972c) Use in plant breeding of acute, chronic or fractionated doses of X-rays or fast neutrons as illustrated with leaves of Saintpaulia. Thesis Agricultural research report, 776, 74p

    Google Scholar 

  • Broertjes C (1973) Achimenes en Streptocarpus. Nieuwe varieteien door bestraling en colchicinebehandeling. Vakbl Bloemisterij 28(28):11

    Google Scholar 

  • Broertjes C (1974) The production of polyploids using the adventitious bud technique. In: FAO’IAEA/EUCARPIA conference on mutations and polyplois, Bari, 1972. IAEA, Vienna, pp 29–35

    Google Scholar 

  • Broertjes C (1976) Mutation breeding of auto tetra ploid achimenes cultivars. Euphytica 25(2):297–304. https://doi.org/10.1007/BF00041560. ISSN/ISBN: 0014-2336. Accession: 005949316

    Article  Google Scholar 

  • Broertjes C (1977) Nieuwe Achimenes cultivars verkregen door bestraling of door colchicines behandeling. Vakbl Bloemisterij 32(43):34–35

    Google Scholar 

  • Broertjes C (1982) The significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated plants II. In: Proceedings of research co-ordination meeting Coimbatore, India (1980). IAEA, Vienna, pp 1–10

    Google Scholar 

  • Broertjes C, Alkema HY (1970) Mutation breeding in flower bulbs. In: First interantional symposium on flowerbulbs; Noordwijk/Lisse II, pp 407–411

    Google Scholar 

  • Broertjes C, Ballego JM (1967) Mutation breeding of Dahlia variabilis. Euphytica 16(2):171–176. https://doi.org/10.1007/BF00043451

    Article  Google Scholar 

  • Broertjes C, Ballego JM (1968) Addendum to: Mutation Breeding of Dahlia variabilis. Euphytica 17:507

    Article  Google Scholar 

  • Broertjes C, Ballego JM (1969) Inconstances de mutation de Dahlia. Soc FR Dahlia Bull Semest 4:6, 13–15

    Google Scholar 

  • Broertjes C, Leffring L (1972) Mutation breeding of Kalanchoë. Euphytica 21:415–423. https://doi.org/10.1007/BF00039336

    Article  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam, 316p

    Google Scholar 

  • Broertjes C, Leffring L, Leuning B (1969) Nieuwe Streptocarpus varieteiten door bestraling. Vakbl Bloemisterij 24(22):806–807

    Google Scholar 

  • Broertjes C, Pouwer A, Evers JFM (1983) Kleurenkeus in overvloed. Alleen geel ontbreekt nog bij Achimenes. Vakbl Bloemisterij 38(35):34–35

    Google Scholar 

  • Brown AG (1971) X-ray treatment of F1 hybrid plants from Streptocarpus johannis x S. hybridus. John Innes Inst Annu Rep 62:49

    Google Scholar 

  • Brown AG (1973) Hybrid streptocarpus. J R Hortic Soc 98:201–205

    Google Scholar 

  • Brown, A.G. 1974. Streptocarpus – the development of a new commercial pot plant. In: The glasshouse environment and objectives in breeding new varieties of ornamental crops. Eucarpia Meeting on ornamentals, Norwich. John Innes Institute annual report, vol 66, p 43

    Google Scholar 

  • Brown SW, Cave MS (1953) Induced dominant lethality in Lilium. Proc Natl Acad Sci U S A 39:97–102

    Article  CAS  PubMed Central  Google Scholar 

  • Brown SW, Cave MS (1954a) The detection and nature of dominant lethals in Lilium. I. Effects of x-rays on the heritable component and functional ability of the polln grain. Am J Bot 41:455–469

    Article  Google Scholar 

  • Brown SW, Cave MS (1954b) The detection and nature of dominant lethals in Lilium. II. Cytological abnormalities in ovules after pollen irradiation. Am J Bot 41:469–483

    Article  Google Scholar 

  • Brown AG, Davies DR (1971) The comparative roles of artificially induced mutations and hybridization in the breeding of Streptocarpus. In: Eucarpia meeting, ornamentals, Wageningen. Institute of Horticultural Plant Breeding, Wageningen, pp 32–37

    Google Scholar 

  • Brown JL, Harney PM (1974) Induction of non-chimeral mutants in Begonia. HortScience 9(3):276

    Google Scholar 

  • Brown SW, Zohary D (1953) Chiasmata and crossing over in Lilium formosanum. Genetics 38:657

    Google Scholar 

  • Brown SW, Zohary D (1955) The relationship of chiasmata and crossing over in Lilium formosanum. Genetics 40:850–873

    Article  CAS  PubMed Central  Google Scholar 

  • Bugallo V, Facciuto G, Brizuela V, Prina AR, de la Torre MCP (2021) Application of X-rays to obtain ornamental mutants in Salvia coccinea. ACI Avances en Ciencias e Ingenierías 12(22):26–35. https://doi.org/10.18272/aci.v12i3.1921

    Article  Google Scholar 

  • Bugnon F, Dulieu H, Gaufillier J (1965) Sur les variations topographiques, le long de la pousse, entre les deux constituants d’une chimere chlorophyllienne sectoriate ou mericline, chez l’Oeillet (Dianthus caryophyllus L); essaid’interpretation ontogenique. C R Acad Sci 260:211–213

    Google Scholar 

  • Buiatti M, Ragazzini R (1965) Gamma ray induced changes in the carnation, Dianthus caryophyllus L. Radiat Bot 5(2):99–105

    Article  Google Scholar 

  • Buiatti M, Ragazzini R, D’Amato F (1965) Somatic mutations in the carnation induced by gamma radiation. In: The use o induced mutations in plant breeding. FAO/IAEA/Eucarpia Meeting, Rome, 1964. Radiat Bot 5(suppl):719–723

    Google Scholar 

  • Burton GW (1972) The use of mutagenic agents in grass and turf breeding. In: Constantin MJ (ed) Mutant. Breed. Workshop. University of Tennessee, Knoxville

    Google Scholar 

  • Burton GW (1974) Radiation breeding of warm season forage and turf grasses. In: Polyploidy and induced mutations in plant breeding, Bari, 1972. IAEA, Vienna, pp 35–39

    Google Scholar 

  • Burton GW (1975) Improving sterile turf and forage burmudagrass hybrids by gamma radiation. Improvement of vegetatively propagated plants through induced mutations. Proceedings of a research co-ordination Meeting held at Tokai, 30 September to 4 October 1974, Organized by the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, 33. IAEA-173 Technical Document Issued by the IAEA, Vienna, 1975

    Google Scholar 

  • Burton GW (1976) Using gamma irradiation to improve sterile turf and forage Bermuda grasses. In: Improvement of vegetatively propagated plants and tree crops through induced mutations, Wageningen, 1976. IAEA, Vienna, pp 25–32

    Google Scholar 

  • Burton GW (1979) Induced mutations for improving millets, apomictic crop plants and veget propagated grasses. In: Induced mutations for crop improvement in Africa, Nigeria, 1978. IAEA, TWCDOC No. 222:33-40

    Google Scholar 

  • Burton GW (1981) Tifway-2 bermudagrass. Mut Breed Newsl 18:8–10

    Google Scholar 

  • Burton GW (1985) Registration of Tifway-2 bermudagrass. Crop Sci 25(2):364

    Article  Google Scholar 

  • Burton GW, Hanna WW (1977) Performance of mutants induced in sterile turf bermudagrass. Mut Breed Newsl 9(1):4

    Google Scholar 

  • Burton GW, Jackson JE (1962) Radiation breeding of apomictic prostrate dallisgrass, Paspalum dilatatum var pauciciliatum. Crop Sci 2:295–297

    Google Scholar 

  • Burton GW, Constantin MJ, Dobson JW Jr et al (1980) An induced mutant of Coastcross-1 bermudagrass with improved winterhardiness. Environ Exp Bot 20(2):115–117

    Article  CAS  Google Scholar 

  • Burton GW, Haanna WW, Powell JB (1982) Mutation breeding of vegetatively propagated turf and forage Bermuda grass. Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria); Panel proceedings series,pp 167–174, 310p. ISBN 92-0-111182-7. IAEA; Vienna; Final research co-ordination meeting on the improvement of vegetatively propagated crops and tree crops through induced mutations; Coimbatore (India), 11–15 Feb 1980

    Google Scholar 

  • Busey P (1980) Gamma ray dosage and mutation breeding in St. Augustinegrass. Crop Sci 20(2):181–184. Florida Agric. Exp. Stn. Journal Series No. 1859. https://doi.org/10.2135/cropsci1980.0011183X002000020008x

    Article  Google Scholar 

  • Cabahug RAM, Khanh HTTM, Lim KB et al (2021) Phenotype and ploidy evaluation of colchicine-induced Echeveria ‘Peerless’. Toxicol Environ Health Sci 13:17–24. https://doi.org/10.1007/s13530-020-00069-z

    Article  Google Scholar 

  • Cabhug RAM, Tran MKTH, Ahn Y-J, Hwang Y-J (2022) Retention of mutations in colchicine-induced ornamental succulent Echeveria ‘Peerless’. Plants 11(24):3420. Published online 2022 Dec 7. https://doi.org/10.3390/plants11243420

    Article  CAS  Google Scholar 

  • Cambecedes J, Duron M, Decourtye L, Jalouzot R (1992) Methodology of in vitro gamma rays irradiation from Lonicera species; mutant description and biochemical characterization. Acta Hortic 320:119–126. ISSN/ISBN: 0567-7572, Accession: 002431821

    Article  Google Scholar 

  • Canul-Ku J, García-Pérez F, Campos-Bravo E, Barrios-Gómez EJ, De La Cruz-Torres E, García-Andrade JM, F de J Osuna-Canizalezy, Ramírez-Rojas S (2012) Efecto de la irradiación sobre nochebuena silvestre (Euphorbia pulcherrima Willd. ex Klotzsch) en Morelos (Effect of irradiation on wild poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) in Morelos). Revista Mexicana de ciencias agricolas, versión impresa ISSN 2007-0934, Rev. Mex. Cienc. Agríc vol.3 no.8 Texcoco nov./dic. http://www.redalyc.org/articulo.oa?id=263124770002

  • Carlson PS (1969) Production of auxotrophic mutants in ferns. Genet Res 14:337–339

    Article  CAS  Google Scholar 

  • Carrier LE (1983) The distribution of mutants in second flush cuttings of an irradiated carnation seedling. Acta Hortic 141:37–39

    Article  Google Scholar 

  • Cartledge JL, Murray MJ, Blakeslee AF (1935) Increased mutation rate from aged Datura pollen. Genetics 21. https://www.pnas.org/doi/pdf/10.1073/pnas.21.11.597

  • Cartledge JL, Barton LV, Blakeslee AF (1936) Heat and moisture as factors in the increased mutation rate from Datura seeds. Proc Am Philos Soc 76(5):663–685

    Google Scholar 

  • Cassells AC, Walsh C, Periappuram C (1993) Diplontic selection as a positive factor in determining the fitness of mutants of Dianthus ‘Mystere’ derived from X-irradiation of nodes in in vitro culture. Euphytica 70:167–174. https://doi.org/10.1007/BF00023756

    Article  Google Scholar 

  • Cecconi F, Durante M (2000) Chimera induction in Sunflower (Helianthus annus L.). Analysis of sector patterns for different genetic markers. https://www.isasunflower.org/documents/EIT9

  • Chakravarty B, Sen S (1987) In vitro regeneration from callus cultures of Scilla indica (Roxb) Baker. Curr Sci 56:960–962

    Google Scholar 

  • Chakravarty B, Sen S (2001) Enhancement of regeneration potential and variability by γ-irradiation in cultured cells of Scilla Indica. Biol Plant 44:189–193

    Article  Google Scholar 

  • Chatterjee SK (1978) The cultivation of Catharanthus roseus in India. In: Alfermann AW, Reinhard E (eds) Production of natural compounds by cell culture methods. Proceedings of the international symposium on plant cell culture, Munchen, pp 74–85

    Google Scholar 

  • Chaturvedi M, Datta K, Datta SK (1997) Pollen variation in gamma irradiated Mesembryanthemum criniflorum L.F. (Aizoaceae). Taiwania 42(4):289–295

    Google Scholar 

  • Chemarin NG, Glazurina AN, Zabelin JA (1973) On uses of ionizing rays in Canna breeding. Byull Gos Nikitsk Bot Sada 1(20):52–57

    Google Scholar 

  • Chen XX (2009) Formation mechanism and maintenance characteristics of leaf colour chimera and mutants of Anthurium andreaeanum ‘Sonate’. M.Sc. Thesis, Nan**g, Agricultural University of Jiangsu, China

    Google Scholar 

  • Chen FC, Yu JY, Pei-Yin Chen PY et al (2008) Somaclonal variation in orchids and the application of biotechnology. Acta Hortic 766:315–322

    Article  CAS  Google Scholar 

  • Chen S, Chai M, Jia Y, Gao Z, Zhang I (2011) In vitro selection of salt tolerant variants following 60Co gamma irradiation of long-term callus cultures of Zoysia matrella [L.] Merr. Plant Cell Tiss Org Cult 107:493–500

    Article  CAS  Google Scholar 

  • Chen Y, Zhang Y, Yuan S, Liu H, Zeng X, Zhang H (2014) Ethyl methane sulfonate induced disease resistance in Begonia hiemalis Fotsch. Hortic Environ Biotechnol 55:498–505. https://doi.org/10.1007/s13580-014-0053-2

    Article  CAS  Google Scholar 

  • Chen J, Thammina C, Li W et al (2016) Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant. Hortic Res 3:16003. https://doi.org/10.1038/hortres.2016.3

    Article  PubMed Central  Google Scholar 

  • Cheng QQ (2011) Studies on leaf culture and induction of octoploid of Phalaenopsis cultivars. M.D. Dissertation. Shantou University, Shantou. (in Chinese)

    Google Scholar 

  • Chiba N, Arakawa K, Nakamura S, Suzuki S, Yokota Y, Hase Y, Narumi I (2007) Mutation induction of asiatic hybrid lily and Lilium × formolongi Hort. using ion beam irradiation. JAEA-review 2007-060-77-3-11, p 77

    Google Scholar 

  • Chinone S, Ishizawa A, Tokuhiro K, Nakatsubo K, Amano M, Hase Y, Narumi I, Tanaka A (2007) Mutation induction on oriental hybrid lily irradiated with ion beams. JAEA-review 2007-060-83-3-17, p 83

    Google Scholar 

  • Chinone S, Tokuhiro K, Nakatsubo K, Hase K, Narumi I (2008) Mutation induction on Delphinium and Limonium sinuatum irradiated with ion beams. JAEA-review 2008-055, p 68

    Google Scholar 

  • Choudhary DK (1976) Non-mutagenicity of sodium azide on Streptocarpus hybridus. Z Pflanzenzucht 76(2):167–170

    CAS  Google Scholar 

  • Choura P (1938) Sur la nature par les hetero-auxines dans la formation provoquee raciness ou de bourgeons en n’importe quell point de boutures de feuilles. C R Acad Sci Paris 207:597–599

    Google Scholar 

  • Chowta CD, Dnyansagar VR (1974) Abnormalities induced in flowering and floral parts by gamma rays and EMS in Chlorophytum tuberosum. Baker M V R Patrika 9:71–76

    Google Scholar 

  • Chuantang N, Li Yazhi L (1989) The radiation induced mutation of canna (Canna L.). Acta Agric Nucleatae Sin 2(1):33–39. ISSN: 1000-8551

    Google Scholar 

  • Colijn CM, Kool AJ, Nijkamp HJJ (1979) An effective chemical mutagenesis procedure for Petunia hybrida cell suspension cultures. Theor Appl Genet 55:101–106

    Article  CAS  Google Scholar 

  • Contreras RN, Friddle MW (2015) ‘Oregon Snowflake’ flowering currant. HortScience 50:320–321

    Article  Google Scholar 

  • Contreras RN, Shearer K (2020) Exposing seeds of Galtonia candicans to ethyl methanesulphonate reduced inflorescence height, lodging, and fertility. HortScience 55:621–624. https://doi.org/10.21273/HORTSCI14775-19

    Article  CAS  Google Scholar 

  • Coppola F (1986) Mutants obtained after gamma irradiation of Jerusalem artichoke cv. Violet de Rennes (Helianthus tuberosus L.). Mut Breed Newsl 28:9–10

    Google Scholar 

  • Cotter DJ (1963) Effects of radiation on the photoperiodism of Portulaca smallii. Radiat Bot 3(3):265–269

    Article  Google Scholar 

  • Craig R (1963) The inheritance of several characters in the Geranium, Pelargonium hortorum Bailey. Thesis, Pennsylvania State University, University Park, p 71

    Google Scholar 

  • Craig R, Hampson SH (1979) New African violets (Saintpaulia) created in a mutation breeding program. Sci Agric 26(4):12

    Google Scholar 

  • Crouse HV (1954) X-ray breakage of lily chromosomes at first meiotic metaphase. Science 119:485–487

    Article  CAS  Google Scholar 

  • Cuany RL, Sparrow AH, John AA (1958) Spontaneous and radiation-induced somatic mutation rates in Antirrhinum, Petunia, Tradescantia and Lilium. Proc X Int Congr Genet 2:62–63

    Google Scholar 

  • Cuany RL, Sparrow AH, Pond V (1985a) Genetic response of Antirrhinum majus to acute and chronic plant irradiation. Z Indukt Abstamm VererbLehre 89:7–13

    Google Scholar 

  • Cuany RL, Sparrow AH, Pond V (1985b) Genetic response of Antirrhinum majus to acute and chronic plant irradiation. Mol Gen Genet 89:1432–1874

    Google Scholar 

  • Cui GR, Zhang ZX, Zhang CY, Hu NB, Sui YH, Li JQ (2010a) Polyploid induction and identification of Oncidium. Acta Pratacult Sin 19:184–190. (in Chinese)

    Google Scholar 

  • Cui GR, Zhang ZX, Hu NB, Zhang CY, Hou XL (2010b) Tetraploid of Phalaenopsis induction via colchicine treatment from protocorm-like bodies in liquid culture. J Zhejiang Univ 1:49–55. (in Chinese)

    Google Scholar 

  • Custers JBM (1978) Plantlet formation from internode bases of carnation (Dianthus caryophyllus L.) in vivo – useful to mutation breeding or not? Neth J Agric Sci 26(1):31–40

    Google Scholar 

  • Custers JBM, Van Eijk JP, Sparnaay LD (1977) New developments in mutation breeding of vegeta propa ornamental crops with special reference to quantitative characters. In: Association Euratom –ITAL, TFAO/IAEA technical meet, Rome, 1964. Pergamon Press, Oxford, pp 302–316

    Google Scholar 

  • D’Amato F, Moschini E, Pacini L (1964) Mutazioni somatiche nel garofano indotte dalla radiazione gamma. Caryologia 17:93–101

    Article  Google Scholar 

  • Dabin P, Bouharmont J (1984) Use of in vitro cultures for mutation breeding in Fuchsia. In: Novak J, Havel L, Dolezel J (eds) Plant tissue and cell culture, application to crop improvement. Academy of Science, Prague, pp 451–452

    Google Scholar 

  • Dai W, Magnusson VA (2012) Morphological variations in forsythia induced by gamma ray irradiation. In: ASHS annual conference, Aug 2012, Poster Board #395

    Google Scholar 

  • Daker MG (1966) ‘Kleiner Liebling’, a haploid cultivafr of Pelargonium. Nature 211(5048):549–550

    Article  CAS  Google Scholar 

  • Daker MG (1967) Cytological studies on a haploid cultivar of Pelargonium, and its colchicine-induced diploids. Chromosoma 21(3):250–271

    Article  Google Scholar 

  • Das PK, Dube S, Ghosh P, Dhua SP (1974) Induction of somatic mutations in some vegetatively propagated ornamentals by gamma irradiation. Technology 11(2,3):185–188

    Google Scholar 

  • Das PK, Dube S, Ghosh P, Dhua SP (1975) Mutation breeding in Daahlia. Indian J Ornam Hortic 6(2):3–8

    Google Scholar 

  • Das PK, Dube S, Ghosh P, Dhua SP (1977) Improvement of some vegetatively propagated ornamentals by gamma radiation. Indian J Hortic 34(2):169–174

    Google Scholar 

  • Das PK, Dube S, Dey AK (1978) New Dahlias through irradiation. Indian Hortic 23(1):19–21

    Google Scholar 

  • Datta K, Shukla R, Datta SK (2003) Effects of gamma irradiation in context of palynological and cytological parameters on Narcissus tazetta cv. Cicily white. Cytologia 68(3):225–230

    Article  Google Scholar 

  • Daud N, Taha RM (2011) Effects of gamma radiation on growth of Sinningia speciosa callus tissue. Jurnal Sains dan Matematik 3(2):33–41. ISSN 1985-7918 33

    Google Scholar 

  • Davies DR (1971) Mutation breeding. Span 14(2):01–104

    Google Scholar 

  • Davies DR, Hedley CL (1975) The induction by mutation of all-year-round flowering in Streptocarpus. Euphytica 24:269–275. https://doi.org/10.1007/BF00147198

    Article  Google Scholar 

  • Davies D, Wall E (1960) Induced mutations at the Vby locus of Trifolium repens. 1. Effects of acute, chronic and fractionated doses of gamma radiation on induction of somatic mutations. Heredity 15:1–15. https://doi.org/10.1038/hdy.1960.52

    Article  Google Scholar 

  • Davies LJ, Brooking R, Catley JL, Halligan EA (2002) Effects of constant temperature and irradiance on the flower stem quality of Sandersonia aurantiaca. Sci Hortic 93(3-4):321–332

    Article  Google Scholar 

  • Dayani K, Ramya R, Wathsala A (2018) 60Co gamma irradiation-induced variations in vegetatively propagated Philodendron Erubescens ‘Gold’. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, p 36, 175p; FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology; Vienna (Austria); 27–31 Aug 2018; IAEA-CN--263-42. https://www.iaea.org/sites/default/files/18/08/cn-263-abstracts.pdf

  • Dayani K, Ramya R, Wathsala A (2021) 60Co gamma irradiation-induced mutation in vegetatively propagated Philodendron erubescens ‘Gold’. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. International Atomic Energy Agency 2021, pp 386–398. https://doi.org/10.1079/9781789249095.0040

    Chapter  Google Scholar 

  • De Loose R (1964) Mutatie-onderzoek by Poa pratensis (Veldbeemdgras R.v.P.). Meded. Landbouwhogesch. Opzoekingsstms Staat Gent, XXIV 4:1367–1375

    Google Scholar 

  • De Loose R (1966) Quelques enseignements preliminaries resultant de l’application des rayonnements ionisants dans la mutagenese chez Rhododendron simsii (Azalea indica) et Guzmania peacockii. In: Table Ronde sur l’Utilisation des Mutations Induites en Horticulture, Gembloux. Seminars in horticultural science, pp 36–40

    Google Scholar 

  • De Loose R (1968) Kwalitatief onderzoek naar de bloemkleurpigmenten bij de Belgische hybriden van Rhododendron simsii Planch (Azalea indica Linn.). Meded Viaam Chem Ver 30(4):99–123

    Google Scholar 

  • De Loose R (1969a) Erfahrungen mit radioaktiven Bestrahlung von Zierpflanzen. Gartenwelt 15:348–350

    Google Scholar 

  • De Loose R (1969b) The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum. Phytochemistry 8:253–259

    Article  Google Scholar 

  • De Loose R (1970a) Flower pigment composition of natural bud-variants among hybrid Chinese Azaleas, Rhododendron Simsii (Planch.). J Hortic Sci 45(3):265–274. https://doi.org/10.1080/00221589.1970.11514354

    Article  Google Scholar 

  • De Loose R (1970b) Flavonoid glycosides in the petals of some Rhododendron species and hybrids. Phytochemistry 0:875–879

    Article  Google Scholar 

  • De Loose R (1970c) Perspektieven voor het bekomen van een geelbloeiende Azalea indica. Standpunt van een scheikundige Blg Tuinbouw 51:307–310

    Google Scholar 

  • De Loose R (1970d) Het bekomen van ‘sporten’ voor de bloemkeur bij de Belgische hybriden van Rhododendron simsii planch. (=Azalea indica) door middle van 60Co-gammastralen. Meded Fac LandbouwwetRijksuniv Gent 35(4):1047–1074

    Google Scholar 

  • De Loose R (1971a) Mutatie-veredeling bij siergewassen met behulp van ioniserende stralingen. In: Grondslagen en Resultaten van de Mtatieveredling. Rijkscentrum van Landbouwkuddig Onderzoek, Gent, pp 34–56

    Google Scholar 

  • De Loose R (1971b) Mutation research on the Belgian hybrids of Rhododendron simsii (Planch.). In: Eucarpia meeting on ornamentals, Wageningen. Institute for Horticultural Plant Breeding, Wageningen, pp 1–8

    Google Scholar 

  • De Loose, R. 1973a. Bestralingen, mutatie- en isotopenonderzoek. Aktiviteitsverslag Rijksstation voor Sierplantenteelt, Melle, 1966-1971, VI, pp 90–102

    Google Scholar 

  • De Loose R (1973b) Het bekomen van ‘sporten’ voor de bloemkleur bij hybriden van Rhododendron simsii Planch (Azalea indica L.) met behulp van ioniserende stralingen. Meded Fac Landbouwwet Rijksuniv Gent 38(42):2090–2109

    Google Scholar 

  • De Loose R (1974a) Nieuwe cultivar op komst van Azalea indica L.: een bonte sport van cv. DE Waele’s Favorite, bekomen door bestraling. Verbondsnieuws Belg Sierteelt 18(4):125–129

    Google Scholar 

  • De Loose R (1974b) Mutation breeding of the hybrids of Rhododendron simsii Planch. (Azalea indica L.). Mutat Breed Newsl 3:15

    Google Scholar 

  • De Loose R (1974c) Mutatie-veredelingsonderzoek op de Azalea indica L. Agrico ntact. Minist Landbouw Belg 34:1–5

    Google Scholar 

  • De Loose R (1974d) Het chromatografie-patroon van de bloemkleurpigmenten bij de hybriden van Rhododendron simsii Planch. En Rhododendron obtusum Planch. (Azalea indica and Azalea japonicum). Meded Fac LandbouwwetRijksuniv Gent 39(1):238–254

    Google Scholar 

  • De Loose R (1974e) Het chromatografie-patroon van de bloemkleurpigmenten bij de hybriden van Rhoddendron simsii Planch. En Rhododendron obtusum Planch. (Azalea indica L. and Azalea japonica L.) Deel B. Bloemkleur en bloemkleurpigmenten bij spontane en kunstmatige sporten van Azalea indica L. en Azalea japonica L. Meded Fac Landbouwwet Rijksuniv Gent 39(3):1369–1384

    Google Scholar 

  • De Loose R (1979) Radiation induced chimeric rearrangement in flower structure of Rhododendron simsii PLANCH. (Azalea indica L.), use of recurrent irradiation. Euphytica 28:105–113

    Article  Google Scholar 

  • De Loose R (1981) Mutatieyeredeling bij siergewassen. Agricontact 115:1–3

    Google Scholar 

  • De Mol WE (1926) Heteroploidy and somatic variation in Dutch flowering bulbe. Am Nat LX:334–339

    Article  Google Scholar 

  • De Mol WE (1931) Somatische variation der Blumenfarbe der Hyazinthe durch Rontgenbestrahlung und andere ausseren Umstande. Z Indukt Abstamm Vererbungsl 59:280–283

    Google Scholar 

  • De Mol WE (1933) Mutation sowohl als Modifikation durch Rontgenbestrahhung und die “Teilungshypothese”. Cellule 42:149–162

    Google Scholar 

  • De Mol WE (1934) Drei aufeinnanderfolgende Jahre der Mutation und Modifikation bei Hyazinthen, nach kaltem Aufbewahren wahrend des Zellteilungsprozess zur Blutenbildung. Cellule 43:131–146

    Google Scholar 

  • De Mol WE (1937a) De invloed van Rontgenbestraling op bloembolgewassen (hyacinten en tulpen). Philips Tech Tijdschr 2(11):321–328

    Google Scholar 

  • De Mol WE (1937b) Een vergelijking tussen het somatische muteren der bloemkleur bij diploid en tetraploide varieteiten van Hyacinthus orientalis. Agricultura (Leuven) 40:216–228

    Google Scholar 

  • De Mol WE (1940) Uber Modifikationen, Mutationen und den Parallelismus dazwischen, in Zusammenhang mit kaltebehandlung von Hyazinthen. Genetica 22(1–3):231–260

    Article  Google Scholar 

  • De Mol WE (1949) Twenty-five years of tulip improvement by x-rays. Pap Mich Acad Sci Arts Lett 35:9–14

    Google Scholar 

  • De Mol WE (1953) X-raying of hyacinths and tulips from the beginning, before thirty years (1922) till today (1952). Jpn J Breed 3(1):1–8

    Article  Google Scholar 

  • Dehgahi R, Joniyasa A (2017) Gamma irradiation-induced variation in Dendrobium Sonia-28 orchid protocorm-like bodies (PLBs). Fungal Genom Biol 7(2):4–11. In the book: Mutation Breeding, genetic diversity and crop adaptation to climate change

    Article  Google Scholar 

  • Deng H, Liu S (1987) The study of radiation induced breeding on Canna indica L. J South China Agric Univ 1987-03

    Google Scholar 

  • Deng H, Liu S (1990) The study of radiation induced breeding in Bougainvillea. J South China Agric Univ 13(1):89–93

    Google Scholar 

  • Denisova NP, Shurshikova GN (1976) Effect of chemical mutagens on economically useful characters in Cyperus esculentus. Fiziol J Fiz-Khim Mekhanizmy Regulyatsii Obmen. Protsessov Organizma, Dep. 2570-77:29–32 (Pl. Breed. Abst. 50: No. 525)

    Google Scholar 

  • Dennis JA (1976) Somatic aberration induction in tradescantia occidentals by neutrons, X- and gamma radiations. II Biologigal results, r. b. e. and o. e. r. Int J Radiat Biol Stud Phys Chem Med 29(4):323

    CAS  Google Scholar 

  • Desai BM (1973) Report on mutation experiments on ornamentals at Bhabha Atomic Research Centre, Trombay. In: 2nd Workshop on Floriculture, 29–31 Jan. Agri-Horticultural Society, Calcutta

    Google Scholar 

  • Desai BM (1974) New cultivars of perennial Portulaca through gamma irradiation. Indian Hortic 19(2):19,23

    Google Scholar 

  • Desai BM, Abraham V (1974) Radiation induced mutants in Canna. In: Use of radioisotopes in studies of plant productivity, Pantnagar, pp 180–186

    Google Scholar 

  • Dhivya M (2015) Studies on induced mutagenesis in crossandra (Crossandra infundibuliformis (L.) Nees). Ph.D. Thesis submitted to Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Dhivya M, Balakrisnnan S, Thangaselvabai T (2015) Sensitivity and mutagenic effects of ethyl methane sulphonate on the growth of Crossandra infundibuliformis L. Nees. Int J Agric Sci Res 5(3):199–204. ISSN(P): 2250-0057; ISSN(E): 2321-0087

    Google Scholar 

  • Díaz LE, García SAL, Morales RA, Báez RI, Pérez VE, Olivar HA, Vargas REJ, Hernández HP, De la Cruz TE, García AJM, Loeza CJM (2018) Effect of gamma radiation of 60Co on sunflower plants (Helianthus annuus L.) (Asteraceae), from irradiated achenes. Scientia Agropecuaria 9(3). https://doi.org/10.17268/sci.agropecu.2018.03.02

  • Díaz-López E, Pichardo-Riego J, de la Cruz TE et al (2003) Variabilidad inducida en Tigridia pavonia (L. f.) D.C. var. Sandra por irradiación de bulbos con rayos gamma de 60Co. Revista Cha**o Serie Horticultura 9(2):235–241

    Article  Google Scholar 

  • Dogra S, Dhiman SR, Gupta YC, Sharma YD (2010) In vitro mutagenesis in carnation (Dianthus caryophyllus L.) for induction of resistance to Fusarium oxysporum f. sp. Dianthi. In: National symposium on lifestyle floriculture: challenges and opportunities. Session-2, Crop Improvement, Biotechnology, and Biodiversity, March 19-21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Abstract No. 2.2(O):10

    Google Scholar 

  • Dommergues P, Gillot J (1965) Variation de la reaction des boutures d’oeillet a l’irradiation gamma. In: The use of induced mutations in plant breeding. FAO/IAEA/EUCARPIA Meeting, Rome, 1964. Radiat Bot 5(suppl):713–718

    Google Scholar 

  • Dommergues P, Gillot J (1973) Obtention de clones genetiquement homogenes dans toutes leurs couches ontogeniques a partir d’une chimere d’oeillet americain. Ann Amelior Plant 23(2):83–93

    Google Scholar 

  • Dommergues P, Heslot H, Gillot J et al (1966) ‘L’induction de mutations chez les rosiers’ Induced Mutations and their Utilization. In: Proceedings of symposium Erwin-Bauer-Gedachtnisvorlesungen IV. Gatersleben. Akademie-Verlag, Berlin, pp 319–348

    Google Scholar 

  • Dona M, Ventura L, Macovei A, Confalonieri M, Savio M, Giovannini A, Carbonera D, Balestrazzi A (2013) Gamma irradiation with different dose rates induces different DNA damage responses in Petunia hybrida cells. J Plant Physiol 170:780–787. https://doi.org/10.1016/j.jplph.2013.01.010

    Article  CAS  Google Scholar 

  • Dong Y, Liu J, Li PW, Li CQ, Lu TF, Yang X, Wang YZ (2018) Evolution of Darwin’s Peloric Gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP gene. Mol Biol Evol 35(8):1901–1915. https://doi.org/10.1093/molbev/msy090

    Article  CAS  PubMed Central  Google Scholar 

  • Dong Y, Liu J, Li P-W, Li C-Q, Tian-Feng L, Yang X, Wang Y-Z (2023) Evolution of Darwin’s peloric gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP gene. Mol. Biol. Evol. 35(8):1901–1915. https://doi.org/10.1093/molbev/msy090. https://www.researchgate.net/publication/324920052_Evolution_of_Darwin's_Peloric_Gloxinia_Sinningia_speciosa_Is_Caused_by_a_Null_Mutation_in_a_Pleiotropic_TCP_Gene

    Article  CAS  Google Scholar 

  • Doorenbos J (1973a) Breeding Elatior-Begonias. Acta Hortic 31:127–131. (reprinted in: The Begonian 40 (12) 1973: 272–277, 290–291)

    Article  Google Scholar 

  • Doorenbos J (1973b) ‘Turo’ een nieuwe Elatior-Begonia. Vakbl Bloemisterij 28(42):25

    Google Scholar 

  • Doorenbos J, Karper JJ (1975) X-ray induced mutations in Begonia x hiemalis. Euphytica 24(1):13–19

    Article  Google Scholar 

  • Doring H, Stubbe H (1938) Die Bedeutung des Ernahrungszustandes (Phosphormangel) fur die strahlen induzierte Mutabilitat bei Antirrhinum majus. Z Ind Abst Vererb 75:352–357

    Google Scholar 

  • Dorion N, Chupeau Y, Bourgin JP (1975) Isolation, culture and regeneration into plants of Ranunculus sceleratus L. leaf protoplasts. Plant Sci Lett 5:325–331. https://doi.org/10.1016/0304-4211(75)90060-7

    Article  Google Scholar 

  • Dube S, Das PK, Dey AK, Bid NN (1980) Varietal improvement of Dahlia by gamma radiation. Indian J Hortic 37(1):82–87. http://www.indianjournals.com/ijor.aspx?target=ijor:ijh&volume=37&issue=1&article=018

    Google Scholar 

  • Dulieu H (1968) Emploi des chimeres chlorophylliennes pour l’etude de l’ontogenie foliaire. Bull Sci Bourgogne, XXV, pp 1–60

    Google Scholar 

  • Dulieu H (1969) Mutations Somatiques Chlorophylliennes Induites et Ontogene Caulinaire. Thesis, Faculte des Sciences, Dijon, C.N.R.S. AO3016

    Google Scholar 

  • Duron M (1992) Induced mutations through EMS treatment after adventitious bud formation on shoot internodes of Weigela cv, Bristol Ruby. Acta Hortic 320:113–118. https://doi.org/10.17660/ActaHortic.1992.320.15

    Article  Google Scholar 

  • Dyer A, Whitney H, Arnold S, Glover B, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod Plant Interact 1(1):45–55. https://doi.org/10.1007/s11829-007-9002-7

    Article  Google Scholar 

  • Elateek S, Elmanabawy EA, Fahmy EM, Awad N (2020) Genetic improvement of Calendula officinal through mutation induction using gamma irradiation and chemical mutagens. Arab Univ J Agric Sci. https://doi.org/10.21608/ajs.2020.24242.1171

  • El-Mokadem HE (2014) In vitro induction of flower mutation in Catharanthus roseus using gamma irradiation. Alexandria Sci Exch J 35(1):64–68

    Google Scholar 

  • El-Nashar YI (2012) Effect of chemical mutagens on vegetative growth and flowering in Calendula Officinalis L. (Cv. Calypso Yellow). Alexandria Sci Exchange J 33(2):108–115, Article 5

    Google Scholar 

  • Eltayeb H, Ei-Metainy AY (2012) Genetical effect of ionizing radiation on Antirrhinum majus. LAP Lambert Academic Publishing, London. ISBN-10: 9783659137938, ISBN-13: 978-3659137938

    Google Scholar 

  • Ernawiati E, Agustrina R, Kanedi M (2022) Kembang sungsang (Gloriosa superba L.): a potential plant as a source of biomutagens. Magna Sci Adv Biol Pharmacy 7(1):36–43. https://doi.org/10.30574/msabp.2022.7.1.0088

    Article  Google Scholar 

  • Espino FJ, Vazquez AM (1981) Chromosome numbers of Saintpaulia ionantha plantlets regenerated from leaves cultured in vitro with caffeine and colchicine. Euphytica 30:847–853

    Article  Google Scholar 

  • Evseeva TI, Geras’kin SA (2001) A combined effect of the radiation and nonradiation factors on Tradescantia (UrO RAN, Yekaterinburg. [in Russian]

    Google Scholar 

  • Evseeva TI, Zainullin VG (2000) A study of mutagenic activity of the air and the snow cover in Syktyvkar by the test for somatic mutations in Tradescantia (Clone 02). Ekologiya 25(5):343

    Google Scholar 

  • Eyerdom H (1981) Flower color sports and variations in Saintpaulia hybrids. Afr Violet Mag 34(4):32–37

    Google Scholar 

  • Fang J, Traore S (2011) In vitro mutation induction of Saintpaulia using ethyl methanesulfonate. HortScience 46:981–984. https://doi.org/10.21273/HORTSCI.46.7.981

    Article  Google Scholar 

  • Farestveit B (1969) Flower colour chimeras in glasshouse carnation, Dianthus caryophyllus L. Yearbook-Royal Veterinary and Agricultural College, Copenhegen, pp 19–33

    Google Scholar 

  • Farestveit B, Klougart A (1966) Bestraling af nelliker med aceellererede elektroner. Horticultura 20:9–12

    Google Scholar 

  • Feiglova B (1968) A new colour mutant in Salvia splendens KER-GAwL. Nova barevna mutace u Salvia splendens KER-GA WL. Preslia (Praha) 40:267–273

    Google Scholar 

  • Fen L, Chu DG (1997) Studies on the inductive mutation of spring orchid. J Hum Agric Univ 23(4):336–340

    Google Scholar 

  • Feng H, Yang J, Li D (2016) Study on petal-sepal mutant of sunflower (Helianthus annuus) after space mutation. Am J Plant Sci 7:2483–2497. https://doi.org/10.4236/ajps.2016.717216

    Article  Google Scholar 

  • Filipovic M (2019) What causes succulent mutations? Unusual Seeds, 25 Dec. https://unusualseeds.net/rose-succulent

  • Firdose K, Pawar N, Dixit G (2011) Induced chlorophyll mutations in Delphinium malabaricum (Huth) Munz. J Appl Hortic 13(1):18–24. https://www.researchgate.net/publication/259569523_Induced_chlorophyll_mutations_in_Delphinium_malabaricum_Huth_Munz

    Article  Google Scholar 

  • Fucui Z, Zuoming X, Yichun H (2011) Study on irradiative mutation breeding of Canna generalis Bailey. J Anhui Agric Sci 39:56–58

    Google Scholar 

  • Fucui Z, Zuoming X, Yichun H (2012) Study on irradiative mutation breeding of Canna generalis Bailey. J Anhui Agric Sci 39(1):56–58. ISSN: 0517-6611

    Google Scholar 

  • Gallone A, Hunter A, Douglas GC (2012) Radiosensitivity of Hebe ‘Oratia Beauty’ and ‘Wiri Mist’ irradiated in vitro with gamma rays from 60Co. Sci Hortic 138:36–42. https://doi.org/10.1016/j.scienta.2012.02.006

    Article  CAS  Google Scholar 

  • Gaufillier J (1965) Recherches sur I’Utilisation des Deticiences Chlorophylliennes Induties pour I’Interpretation du Fonctionnement des Meristemes Terminaux de Tiges Feuillets: Cas de I’Oeillet (Dianthus caryophyllus L.). Faculte des Sciences, Dijon, 34p

    Google Scholar 

  • Gavidia I, Perez-Bermudez P (1999) Variants of Digitalis obscura from irradiated shoot tips. Euphytica 110:153–159

    Article  Google Scholar 

  • Geier T (1983) Induction and selection of mutants in tissue cultures of Gesneriaceae. Acta Hortic. 131:329–337

    Article  Google Scholar 

  • Geier T (1988) In vitro chemical induction and propagation of Kohleria mutants with altered plant shape and flowering behavior. Acta Hortic 226:687–693

    Article  Google Scholar 

  • Geier T (1989) An improved type of ‘Kohleria’ obtained through in vitro chemical mutagenesis. Mutat Breed Newsl 34:7–8

    Google Scholar 

  • Geier T (1994) ‘Orange Glow’ – eine neue Kohleria-Sorte. TASPO Gartenbaumagazin ½:24–26

    Google Scholar 

  • Geier T (2012) Chimeras: properties and dissociation in vegetatively propagated plants. In: Plant mutation breeding and biotechnology. CABI, Wallingford, pp 191–201

    Chapter  Google Scholar 

  • Gerats AGM (1991) Mutants involved in floral and plant development in Petunia. Plant Sci 80:19–25

    Article  Google Scholar 

  • Ghani M, Sharma SK (2019) Induction of powdery mildew resistance in gerbera (Gerbera jamesonii) through gamma irradiation. Physiol Mol Biol Plants 25:159–166. https://doi.org/10.1007/s12298-018-0613-5

    Article  CAS  Google Scholar 

  • Ghani M, Kumar S, Thakur M (2013) Induction of novel variants through physical and chemical mutagenesis in Barbeton daisy (Gerbera jamesonii Hook.). J Hortic Sci Biotech 88(5):585–590. https://doi.org/10.1080/14620316.2013.11513010

    Article  CAS  Google Scholar 

  • Ghani M, Kumar S, Thakur M (2014) Physiological and biochemical responses of gerbera (Gerbera jamesonii Hook.) to physical and chemical mutagenesis. J Hortic Sci Biotechnol 89:301–306. https://doi.org/10.1080/14620316.2014.11513083

    Article  CAS  Google Scholar 

  • Ghosh S, Ganga M (2019) Determination of lethal dose for ethyl methane sulphonate induced mutagenesis in jasmine. Chem Sci Rev Lett 8:6–10. ISSN 2278-6783.

    CAS  Google Scholar 

  • Ghosh S, Ganga M, John Joel A (2018a) Assessment of mutagenic sensitivity in jasmine (Jasminum spp.) to chemical mutagen. Electron J Plant Breed 9(3):1002–1011. ISSN 0975-928X. https://doi.org/10.5958/0975-928X.2018.00125.4

    Article  Google Scholar 

  • Ghosh S, Ganga M, Soorianathasundaram K (2018b) Determination of radio sensitivity of jasmine (Jasminum spp.) to gamma rays. Electron J Plant Breed 9(3):956–965. ISSN: 0975-928X. https://doi.org/10.5958/0975-928X.2018.00119.9

    Article  Google Scholar 

  • Ghosh S, Ganga M, Ratna PR (2018c) Determination of mutagenic sensitivity of Jasminum grandiflorum to gamma irradiation. In: Proceedings of the national symposium on recent advances in floriculture and urban horticulture in global perspective, 4–5 Jan. BCKV, Kalyani, pp 68–69

    Google Scholar 

  • Ghosh S, Ganga M, Soorianathasundaram K (2019) Studies of mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in jasmine. Curr J Appl Sci Technol 38:1–8. https://doi.org/10.9734/cjast/2019/v38i630414

    Article  CAS  Google Scholar 

  • Ghosh S, Ganga M, Soorianathasundaram K, Kumar A, Kapoor M (2020) Induction of mutation in Jasminum grandiflorum with gamma rays and EMS and identification of novel mutants using molecular markers and SEM imaging. Indian J Hortic 77(4):695–703. https://doi.org/10.5958/0974-0112.2020.00101.2

    Article  Google Scholar 

  • Girija S, Ganapathi A, Vengadesan G (1999) Micropropagation of Crossandra infundibuliformis (L.) Nees. Sci Hortic 82(3/4):331–337

    Article  CAS  Google Scholar 

  • Girsang RMY, Kardhinata EH, Damanik RIM, Karo B (2021) The phenotypic appeal of lily (Lilium longiflorum Thunb.) prompted mutation by colchicine. IOP Conf Ser Earth Environ Sci 782:042050. https://doi.org/10.1088/1755-1315/782/4/042050

    Article  Google Scholar 

  • Gonzales MA, Aurigue FB, Tapic RT (2008) Radiosensitivity of three species of ground orchids (S. plicata plicata, S. kimballiana var. angustifolia and S. tomentosa) to acute gamma radiation. CLSU R D J 2(1):30–53

    Google Scholar 

  • Gopitha G, Rajamani K, Ganga M, Ravikesavan R, Gnanam R (2022) Resolving the acute gamma irradiation and ethyl methanesulphonate induced lethality for Jasminum sambac L. (Aiton) cv. Ramanathapuram Gundumalli. Electron J Plant Breed 13(2):341–349

    Google Scholar 

  • Grabowska B, Mynett K (1964) The radiation of gamma Co60 rays on the dwarf Dahlia. Bull Insto Hodowli Ak Rosi 5-6:17–26. (In Polish)

    Google Scholar 

  • Grabowska B, Mynett K (1970) Induction of changes in garden tulips (Tulipa hybr. Hort.) under the influence of gamma rays 60Co. Bull Inst Hodowli Aklim Rosl 1–2:89–92

    Google Scholar 

  • Grassotti A, Mercuri A, Schiva T, Ranieri M (1987) Mutations induced by physical agents on Lilium Ann 1st Sper Floricolt 18:139–153

    Google Scholar 

  • Grünewald TPM (2002) Tibouchina plant named ‘Grue-Tib 04’. Patent number: PP13361. https://patents.justia.com/inventor/theodorus-p-m-gr-newald

  • Grunewaldt J (1980) Spontane und induzierte Farbschecken-von Saintpaulia ionantha H. Wendl. Gartenbauwissenschaft 45(3):124–128

    Google Scholar 

  • Grunewaldt J (1983) In vitro mutagenesis of Saintpaulia and Pelargonium cultivars (genetic variability, vegetative propagation). Acta Hortic 131:339–343. ISSN/ISBN: 0567-7572. https://doi.org/10.17660/actahortic.1983.131.40

    Article  Google Scholar 

  • Grunewaldt J (1988) In vitro selection and propagation of temperature tolerant of Saintpaula. Acta Hortic 226:271–275. https://doi.org/10.17660/ActaHortic.1988.226.32

    Article  Google Scholar 

  • Guo YM, Zeng LJ, Liang SY, Deng RQ, Ye HN, Liao SX (2016) Effect of UV-B radiation on growth and main secondary metabolites of Dendrobium officinale Kimura et Migo. Northern Hortic 16:154–156. (in Chinese)

    Google Scholar 

  • Gupta MN (1966) Induction of somatic mutations in some ornamental plants. In: Proceedings of all India symposium on horticulture, pp 107–114

    Google Scholar 

  • Gupta MN (1970) Use of gamma irradiation in the production of new varieties of Perennial portulaca. In: Proceedings of symposium on radiation and radiomimetic substances in mutation breeding. Food and Agricultural Communication Department at Energy, Bombay, pp 206–214

    Google Scholar 

  • Gupta PP (1977) Cytogenetics of aquatic ornamentals IV. Effects of gamma irradiation on Nymphaea rubra Roxb. Cytologia 42:297–304

    Article  Google Scholar 

  • Gupta MN, Matsuo T (1969) Effects of thermal neutrons and gamma rays on seeds of Antirrhinum majus and their modification by water content and oxygen concentration. Radioisotopes 18(2):52–55

    Article  CAS  Google Scholar 

  • Gupta MN, Samata Y (1967) The relationship between developmental stages of flower-buds and somatic mutations induced by acute X- and chronic gamma-irradiation in Cosmos bipinnatus. Radiat Bot 7(3):225–240. https://doi.org/10.1016/S0033-7560(67)80022-X

    Article  Google Scholar 

  • Gustafson A, Gadd J (1965) Mutations and crop improvement. IV. Poa pratensis J. (Gramineae). Hereditas 53(1–2):90–103

    Google Scholar 

  • Haggo A (2006) Tibouchina urvilleana plant named ‘TB01’. US13/573,5862012-09-262012-09-26Tibouchina urvilleana plant named ‘TB01’

    Google Scholar 

  • Haigh MV, Howard A (1973) Radiation induced tumorous outgrowth in young gametophytes of Osmunda regalis. Radiat Bot 13:111–119

    Article  Google Scholar 

  • Hajizadeh HS, Mortaza SN, Tohid F, Yildiz H, Helvaci M, Alas T, Okatan V (2022) Effect of mutation induced by gamma-irradiation in ornamental plant Lilium (Lilium longiflorum cv. Tresor). Pak J Bot 54(1). https://doi.org/10.30848/PJB2022-1(23)

  • Hamatani M, Iitsuka Y, Abe T, Miyoshi K, Yamamoto M, Yoshida S (2001) Mutant flowers of dahlia (Dahlia pinnata Cav.) induced by heavy-ion beams. RIKEN Accel Prog Rep 34:169

    Google Scholar 

  • Hansen AA, Juska FV (1959) A ‘progressive’ mutation in Poa pratensis L. by ionizing radiation. Nature (London) 184:1000–1001

    Article  Google Scholar 

  • Hansen AA, Juska FV (1962) Induced mutations in Kentucky bluegrass. Crop Sci 2:369–371

    Article  Google Scholar 

  • Haq MS (1983) Colchicine induced mutants in Salvia coccinia Juss. Geobios. New Rep 2:149–150

    Google Scholar 

  • Harris GP, Hart EMH (1964) Regeneration from lef squares of Peperomia sandersii A. DC: a relationship between rooting and budding. Ann Bot (London) 28:509–526

    Article  Google Scholar 

  • van Harten AM, Bal ECJ (1986) Chemically induced mutations for male sterility in Petunia x hybrida. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding: proceedings international symposium Organized by EUCARPIA, 8–13 Sept 1985, Berlin (West), Germany. De Gruyter, Berlin, pp 43–48. https://doi.org/10.1515/9783110871944-006

    Chapter  Google Scholar 

  • Hase Y, Okamura M, Takeshita D, Narumi I, Tanaka A (2010) Efficient induction of flower-color mutants by ion beam irradiation in petunia seedlings treated with high sucrose concentration. Plant Biotechnol. 27:99–103. https://doi.org/10.5511/plantbiotechnology.27.99

    Article  CAS  Google Scholar 

  • Hase Y, Akita Y, Kitamura S, Narumi I, Tanaka A (2012) Development of an efficient mutagenesis technique using ion beams: Toward more controlled mutation breeding. Plant Biotechnol. 29:193–200

    Article  CAS  Google Scholar 

  • Hasing T, Rinaldi E, Manrique S, Colombo L, Haak DC, Zaitlin D, Bombarely A (2019) Extensive phenotypic diversity in the cultivated Florist’s Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder population. Plants People Planet 1:363–374. https://doi.org/10.1002/ppp3.10065

    Article  Google Scholar 

  • Haspolat G, Kunter B, Ozzambak ME (2016) Some changes in mutant Crocus plants. In: ISHS Acta Horticulturae 1127: XXIV international horticultural congress on horticulture: sustaining lives, livelihoods and landscapes (IHC2014): international symposium on plant breeding in horticulture. https://doi.org/10.17660/ActaHortic.2016.1127.60

    Chapter  Google Scholar 

  • Hassan AA, Ahmad Z, Ariffin S (2010) RnD seminar 2010: research and development seminar 2010, Bangi (Malaysia), 12–15 Oct 2010. Also available in Malaysian Nuclear Agency Document Delivery Center, 8p

    Google Scholar 

  • Hassan M, Badr M, El-Maksoud BA, El-Shennawy O (2017) Effect of gamma radiation on genetic improvement against salinity in Catharanthus roseus plants. J Adv Agric Res 22(3):424–455. https://doi.org/10.21608/jalexu.2017.243819

    Article  Google Scholar 

  • Hayashi Y, Ishii S, Hirano T, Ichinose K, Kazama Y, Abe T (2019) New ornamental cherry cultivars induced by heavy-ion beam irradiation. Acta Hortic 1235:99–104. https://doi.org/10.17660/ActaHortic.2019.1235.13

    Article  Google Scholar 

  • Hazbullah NA, Taha RM, Saleh A, Mahmad N (2012) Irradiation effects on in vitro organogenesis, callus growth and seedling development of Garbera jamesomnii. Hortic Bras 30:252–257

    Article  Google Scholar 

  • Heffron LM, Korban SS (2022) Mutagenic responses to ethyl methanesulfonate and phenotypic characterization of an M1 generation of snapdragon, Antirrhinum majus. Euphytica 218(6):76. ISSN: 0014-2336

    Article  CAS  Google Scholar 

  • Heffron L, Blowers A, Korban S (2006) Chemical mutagenesis in snapdragon (Antirrhinum majus). HortScience 41(4). https://doi.org/10.21273/HORTSCI.41.4.1021A

  • Hekstra G, Broertjes C (1968) Mutation breeding in bulbous Iris. Euphytica 17:315–351

    Article  Google Scholar 

  • Hemalatha K (1998) Induction of mutation in carnation (Dianthus caryophyllus L.) through gamma rays and EMS. Ph.D. Thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Henny RJ (1978) In vitro propagation of Peperomia ‘Red Ripple’ from leaf discs. HortScience 139(2):150–151

    Article  Google Scholar 

  • Hentrich W, Beger B (1974) Untersuchungen uber die mutagene Effizienz von N-nitroso-N-Methylharnstoff bei Saintpaulia ionantha H. Wendl Arch Zuchtungsforsch 4(1):29–43

    Google Scholar 

  • Hentrich W, Glawe M (1982) Zuchtung von Edelnelken (Dianthus caryophyllus) durch AMS – Applikation in die Blattachseln von Jungpflanzen. Archiv Zuchtungsforsch 12(3):197–207

    Google Scholar 

  • Hernández-Muñoz S, Pedraza-Santos ME, López PA et al (2017a) Estimulación de la germinación y desarrollo in vitro de Laelia autumnalis con rayos gamma. Revista Fitotecnia Mexicana 40(3):271–283

    Article  Google Scholar 

  • Hernández-Muñoz S, Pedraza-Santos ME, López PA et al (2017b) Determinación de la DL50 y GR50 con rayos gamma (60Co) en protocormos de Laelia autumnalis in vitro. Agrociencia 51(5):507–524

    Google Scholar 

  • Heslot H (1964) L’induction experimentale de mutations chez les plantes floras. In: P.V. Séance 16 decembre. Academy of Agriculture, France, pp 1281–1308

    Google Scholar 

  • Heursel J (1972) Studie van de Overerving en de Genotypische Variabiliteit van Kleur, Grootte ev Vorm van de Bloemen bij Rhododendron simsii Planch. (Azalea indica L). Rijksstn Sierplantenteelt, Melle, Meded 28:196

    Google Scholar 

  • Heursel J (1981) Diversity of flower colours in Rhododendron simsii Planch. and prospects for breeding. Euphytica 30(1):9–14

    Article  Google Scholar 

  • Hewawasam WDCJ (2003) Creating novel phenotypes of Crossandra infundibuliformis var. ‘Danica’ through tissue culture and induced mutations. M.phil. Thesis. PGIA, University of Peradeniya

    Google Scholar 

  • Hewawasam WDCJ, Bandara D, Aberathne WM (2004) New phenotypes of Crossandra infundibuliformis var. danica through in vitro culture and induced mutations. Trop Agric Res 16:253–270. Biology Corpus ID: 90815640

    Google Scholar 

  • Honda K, Maeda T, Ichimuru N, Fukuda T, Fu**o M, Anami T, Nishizuku M (1980) Characteristics of a new variety of Chinese mat grass ‘Toyomidori’. Bull Oita Mat Grass Techn Guid Stn 1:1–18

    Google Scholar 

  • Hong YP, Lee JS, Kim KK (1980) Studies on improving Hibiscus syriacus in Korea. Research report of the Office of Rural Development, Horticultute and Sericulture, Suwon, vol 22, pp 56–62

    Google Scholar 

  • Hopper JE, Peloquin ST (1968) X-ray inactivation of the stylar component of the self-incompatibility reaction in Lilium longiflorum. Can J Genet Cytol 10:941–944

    Article  Google Scholar 

  • Horita M, Sakamoto K, Abe T, Yoshida S (2002) Induction of mutation in Sandersonia aurantiaca Hook. by heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:131

    Google Scholar 

  • Horn W (1984) Treating invitro cultures of floriculture crops with mutagens. Mutat Breed Newsl 24:13–15

    Google Scholar 

  • Horovitz A, Zohary D (1966) Spontaneous variegation for perianth colour in wild Anemone coronaria. Heredity 21(3):513–515. https://doi.org/10.1038/hdy.1966.49. Corpus ID: 41825958

    Article  Google Scholar 

  • Hoskins T, Contreras RN (2019) Exposing seeds of Sarcococca confusa to increased concentrations and durations of ethyl methanesulfonate reduced seed germination, twinning, and plant size. Hortscience 54(11):1902–1906. https://doi.org/10.21273/HORTSCI14428-19

    Article  CAS  Google Scholar 

  • Hosoguchi T, Uchiyama Y, Komazawa H, Yahata M, Shimokawa T, Tominaga A (2021) Effect of three types of ion beam irradiation on Gerbera (Gerbera hybrida) in vitro shoots with mutagenesis efficiency. Plants 10(7):1480. https://doi.org/10.3390/plants10071480

    Article  CAS  PubMed Central  Google Scholar 

  • Howard A, Haigh MV (1968) Chloroplast aberrations in irradiated fern spores. Mutat Res 6(2):263–280

    Article  Google Scholar 

  • Huang P-L (2021) Preliminary studies on mutagenic effects of sodium azide and γ-Ray irradiation on organogenesis in Guzmania and Aechmea Bromeliads. Res Bull of KDARES 21(1):28–38

    CAS  Google Scholar 

  • IAEA (1972) Induced mutations and plant improvement. IAEA, Vienna, p 526

    Google Scholar 

  • Ichikawa S (1997) Somatic mutation frequencies in Tradescantia stamen hairs treated with relatively low thermal neutron fluxes. Radiat Res 147(1):109–114. https://doi.org/10.2307/3579449

    Article  CAS  Google Scholar 

  • Ichikawa S, Sparrow AH (1978) Influence of radiation exposure rate on somatic mutation frequency and loss of reproductive integrity in Tradescantia stamen hairs. Mutat Res 52(2):195

    Article  Google Scholar 

  • Ichikawa S, Takahashi CS (1977) Somatic mutation frequencies in stamen hairs of stable and mutable clones of Tradescantia after acute gamma-ray treatments with small doses. Mutat Res 9(3):195

    Article  Google Scholar 

  • Ichikawa S, Sparrow AH, Thompson KH (1969) Morphologically abnormal cells, somatic mutations and loss of reproductive integrity in irradiated Tradescantia stamen hairs. Radiat Bot 9:195

    Article  Google Scholar 

  • Ichikawa S, Takahashi CS, Nagashima-Ishii C (1981) Somatic mutation frequency in the stamen hairs of Tradescantia KU 7 and KU 9 clones exposed to low-level gamma rays. Jpn J Genet 56:409–423

    Article  Google Scholar 

  • Iizuka M, Kudo O, Kimurai Y, Tanaka A, Shikazono N, Watanabe H (1998) Induction of mutation in strawberry and hydrangea by ion beam irradiation. Effects of ion beams on germination of strawberry and hydrangea seed. JAERI-Review 99-025 2. 3, TIARA Annual Report, pp 30–31

    Google Scholar 

  • Iizuka M, Kudo N, Kimura Y, Hase Y, Tanaka A (2001) Induction of mutation in Spiraea by ion beam irradiation. In: Saidoh M, Toraishi A, Namba H, Itoh H, Tanaka S, Naramoto H, Sekine T, Tanaka A, Kobayashi Y, Arakawa K, Otsubo M, Tajima S, Tanaka S (eds) Effects of ion beams on germination of Spiraea seed TIARA annual report 2000, No. 2001-039, pp 45–46

    Google Scholar 

  • Ikegawa S, Shoji K, Hase Y, Nozawa S (2016) Determination of ion beam irradiation conditions for callus of tulip. QST Takasaki Ann Rep 2015:131

    Google Scholar 

  • Ishii S, Hayashi Y, Ryuto H, Fukunishi N, Abe T (2009) A new cultivar “Nishina Zaou” induced by heavy ion beam irradiation. RIKEN Accel Prog Rep 42:xi

    Google Scholar 

  • Ishii S, Hayashi Y, Hirani T, Fukunishi N, Abe T (2011) Development of flowering mutant of cherry blossom by heavy-ion irradiation. RIKEN Accel Prog Rep 44:xiii

    Google Scholar 

  • Ishizaka H (2018) Breeding of fragrant cyclamen by interspecific hybridization and ion-beam irradiation. Breed Sci 68(1). https://doi.org/10.1270/jsbbs.17117

  • Ishizaka H, Kondo E, Kameari N (2012) Production of novel flower color mutants from the fragrant cyclamen (Cyclamen persicum × C. purpurascens) by ion-beam irradiation. Plant Biotechnol. 29:201–208

    Article  CAS  Google Scholar 

  • Ito Y, Seki E, Ohkoshi K, Watanabe M, Saito H, Hayashi Y, Abe T (2007) Mutation induction by ion beam irradiation in Begonia. Bull Chiba Agric Res Cent 6:75–84. ISSN: 1347-2585

    Google Scholar 

  • Jack (2009) Chemicals and hormones to induce mutations. Cacti and succulents. https://www.shaman-australis.com/forum/20765-c

  • Jala Hayati BD, Krisantini SIA (2016) Radiosensitivity levels of in vitro cultured Celosia cristata planlets by γ - ray irradiation. J Trop Crop Sci 3(2):61–65

    Article  Google Scholar 

  • Jamdhade VP, Kashid NG (2016) Effect of physical and chemical mutagenesis in sunflower (Helianthus Annus L.) on seed germination through induced mutation. Int J Sci Res 5(6). ISSN: 2319-7064 Index Copernicus Value (2013): 6.14

    Google Scholar 

  • Janick J, Skirvin RM, Janders RB (1977) Comparison of in vitro and in vivo tissue culture systems in scented geranium. J Hered 68:62–64

    Article  Google Scholar 

  • Jerzy M, Zalewska M (1992) In vitro adventitious bud techniques for mutation breeding of Gerbera jamesonii. Acta Hortic 314:269–274. https://doi.org/10.17660/ActaHortic.1992.314.32

    Article  Google Scholar 

  • Jiang L, Dunn BL (2016) Ethyl methanesulfonate and caffeine mutagenetic treatment to four ornamental Silene species. J Environ Hortic 34(4):95–100. https://doi.org/10.24266/0738-2898-34.4.95

    Article  CAS  Google Scholar 

  • Jiang P, Chen Y, Wilde HD (2014) Optimization of EMS mutagenesis on petunia for TILLING. Adv Crop Sci Technol 2:141. https://doi.org/10.4172/2329-8863.1000141

    Article  CAS  Google Scholar 

  • ** Q, Yao Y, Cai YP, Lin Y, Fan HH, Luo Q (2012) Effects of NO on the growth and subculture of Dendrobium protocorms. Pharm Biotechnol 19:517–520

    Google Scholar 

  • Johnson EL (1948) Response of Kalanchoe tubiflora to X-irradiation. Plant Physiol 23:544–556

    Article  CAS  PubMed Central  Google Scholar 

  • Johnson RT (1980) Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15(5):605–606

    Article  Google Scholar 

  • Julen G (1954) Observations on X-rayed Poa pratensis. Acta Agric Scand 4:585–593

    Article  Google Scholar 

  • Julen G (1958) Uber die Effekte der Rontgenbestrahlung bei Poa pratensis. Zuchter 28:37–40

    Google Scholar 

  • Julen G (1961) The effect of X-rays on the apomixix in Poa pratensis. In: Effects of ionizing radiation on seeds (Proc. Symp. Karlsruhe, 1960). IAEA, Vienna, pp 527–532

    Google Scholar 

  • Jungnickel F (1977) Induktion und Vermehrung von Mutanten bei Saintpaulia ionantha H. Wendl In Sterikultur. Biol Zentralblatt 96:335–343

    Google Scholar 

  • Kaicker US, Singh HP (1979) Role of mutation breeding in Amaryllis. Plant Life 35(1/4):66–73

    Google Scholar 

  • Kameari N, Okubo N, Kondo E, Nakayama M, Akita Y, Hase Y, Tanikawa N, Morita Y, Tanaka A, Ishizaka H (2011) Floral scent compounds in white mutant generated from fragrant purple cyclamen ‘Kokou-no-kaori’ (Cyclamen persicum × C. purpurascens) by ion beam irradiation. Hortic Res 10(suppl 2):220

    Google Scholar 

  • Kameari N, Akita Y, Kitamura S et al (2012) Characteristics of yellow-flowered mutant generated from dihaploid of fragrant cyclamen (Cyclamen persicum ‘Golden Boy’ × C. purpurascens) by ion- beam irradiation. Hortic Res 11(suppl 1):191

    Google Scholar 

  • Kameya T (1975) Culture of protoplasts from chimera plants tissue of nature. Jpn J Genet 50(5):417–420

    Article  Google Scholar 

  • Kanaya T, Saito H, Hayashi Y, Fukunishi N, Ryuto H, Miyazaki K, Kusumi T, Abe T, Suzuki K (2008) Heavy-ion beam-induced sterile mutants of verbena (Verbena hybrida) with an improved flowering habit. Plant Biotechnol. 25:91–96. https://doi.org/10.5511/plantbiotechnology.25.91

    Article  Google Scholar 

  • Kang SY, Kim DS, Lee GJ (2007) Genetic improvement of crop plants by mutation techniques in Korea. Plant Mutat Rep 1(3):7–15

    Google Scholar 

  • Kannan M, Sathiyamurthy VA, Shanker V (2002) Mutagenic studies on Jasminum sambac. In: Misra RL, Misra S (eds) Floriculture research trend in India. Indian Society of Ornamental Horticulture, Division of Floriculture and Landsca**, IARI, New Delhi, pp 209–211

    Google Scholar 

  • Kannan B, Davila-Olivas NH, Lomba P et al (2015) In vitro chemical mutagenesis improves the turf quality of bahiagrass. Plant Cell Tiss Org Cult 120(2):551–561

    Article  CAS  Google Scholar 

  • Kapoor M, Kumar P, Lal S (2014) Gamma radiation induced variations in corn marigold (Glebionis segetum) and their RAPD-based genetic relationship. Indian J Agric Sci 84(7):796–801

    Google Scholar 

  • Karper JJ, Pierik RLM (1981) Gemuteerde alanchoe bloemen kunnen vegetatief worden vermeeederd. Vakbl Bloemisterij 36(44):44–45

    Google Scholar 

  • Karunananda D, Ranathunga R, Abeysinghe W (2018) 60Co gamma irradiation-induced variations in vegetatively propagated Philodendron erubescens ‘Gold’. In: FAO/IAEA international symposium on plant mutation breeding and biotechnolgy, Vienna, 27–31 Aug, Abst. No. IAEA-CN-263-42

    Google Scholar 

  • Kashikar SG, Khalatkar AS (1981) Breeding for flower colour in Petunia hybrida Hort. Acta Hortic 111:35–40. https://doi.org/10.17660/ActaHortic.1981.111.3

    Article  Google Scholar 

  • Kaur S, Khare PB (1982) Effect of gamma irradiation on development of Hemionitis arifolia (Burm.) Moore. Aspects Plant Sci 6:25–30

    Google Scholar 

  • Kaur R, Kapoor M, Kaur R, Kumar A (2017) Effect of gamma irradiation on cyto-morphology, total phenolic content and antioxidant activity of Calendula. J Hill Agric 8(4):395–402. https://doi.org/10.5958/2230-7338.2017.00078.7

    Article  Google Scholar 

  • Kelly JW, Lineberger RD (1981) Thermal neutron induced changes in Saintpaulia. Environ Exp Bot 21(1):95–102

    Article  CAS  Google Scholar 

  • Khalaburdin AP (1991) Effects of gamma radiation from 60Co on changes in some biological and morphological traits in hybrid canna. Genetiko-selektsionnye issledovaniya v Turkmenin, pp 158–167. Cited in: Horti Abstr, 1994: no. 1268

    Google Scholar 

  • Khalatkar AS, Kashikar SG (1980) Sodium azide mutagenicity in Petunia hybrida. Mutat Res 79:81–85

    Article  CAS  Google Scholar 

  • Khan IA (1997) Induction of mutations in saffron (Crocus sativus L.) by gamma irradiation. J Nucl Agric Biol 26(3):155–160. ISSN 0379-5489

    Google Scholar 

  • Khan IA (2004) Induced mutagenic variability in saffron (Crocus sativus L.). Acta Hortic 650:281–283

    Article  Google Scholar 

  • Khan IA (2007) Development of high yielding saffron mutant. ISHS Acta Horticulturae, 739. In: II International symposium on saffron biology and technology. https://doi.org/10.17660/ActaHortic.2007.739.31

  • Khan IM, Khan GA, Islam S (1978) Studies on the spontaneous plastid mutations in Dahlia variabilis Desf. Pak J For 28(3):137–143

    Google Scholar 

  • Khan MA, Nagoo S, Naseer S, Nehvi FA, Zargar SN (2011) Induced mutation as a tool for improving corm multiplication in saffron (Crocus sativus L.). J Phytology 3(7):8–10. ISSN: 2075-6240. www.scholarjournals.org

    CAS  Google Scholar 

  • Khare PB (1994) Induced aneuploid in Adiantum capillus-veneris L. Cytologia 59:31–34

    Article  Google Scholar 

  • Khare PB, Kaur S (1980) Growth and differentiation of the gametophyte of a fern, Adiantum lunulatum Burm. by means of gamma irradiation. New Bot 7:83–90

    Google Scholar 

  • Kharkwal MC, Pandey RN, Pawar SE (2004) Mutation breeding for crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding, vol 26. Springer, Dordrecht, pp 601–645

    Chapter  Google Scholar 

  • Khoddamzadeh AA, Sinniah UR, Kadir MA, Kadzimin SB, Maziah M, Sreeramanan S (2010) Detection of somaclonal varia-tion by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb. f.) Christenson. Afr J Biotechnol 4:6632–6639. (17) (PDF) The Application of Biotechnology to Orchids. https://www.researchgate.net/publication/262850225_The_Application_of_Biotechnology_to_Orchids. Accessed 3 Jan 2023

    Google Scholar 

  • Khosravi AR, Kadir MA, Kadzemin SB et al (2009) RAPD analysis of colchicines induced variation of the Dendrobium Serdang beauty. Afr J Biotechnol 8:1455–1465

    CAS  Google Scholar 

  • Kim J-K, Lee K-U, Lim Y-T (1997) Studies on mutation breeding of Hibiscus syriacus. Research report, p 89

    Google Scholar 

  • Kim SH, Jo YD, Ryu J et al (2019a) Effects of the total dose and duration of irradiation on the growth responses and induced SNPs of a Cymbidium hybrid. Int J Radiat Biol 96:545–551

    Article  Google Scholar 

  • Kim SH, Kim Y-S, Lee H-J, Jo YD, Kim J-B, Kang S-Y (2019b) Biological effects of three types of ionizing radiation on cree** bentgrass. Int J Radiat Biol 95(9):1295–1300. https://doi.org/10.1080/09553002.2019.1619953

    Article  CAS  Google Scholar 

  • Kim SH, Kim SW, Ryu J et al (2020) Dark/light treatments followed by –irradiation increase the frequency of leaf-color mutants in Cymbidium. Plants 9:532. https://doi.org/10.3390/plants9040532

    Article  CAS  PubMed Central  Google Scholar 

  • Kim JH, Lee JS, Oh HJ, Kim SY, Kim HC (2021) New cultivar ‘Hwangnarae’ of leaf color variegated hosta minor developed by EMS treatment. Korean J Plant Resour 34(2):172

    Google Scholar 

  • Kleffel B, Walther E, Preil W (1986) X-ray induced mutations in embryogenic suspension cultures of Euphorbia pulcherrima. In: Nuclear techniques and in vitro culture for plant improvement, Vienna, 1985, pp 113–120

    Google Scholar 

  • Klekowski EJ (2011) Plant clonality, mutation, diplontic selection and mutational meltdown. Biol J Linn Soc 79(1):61. https://doi.org/10.1046/j.1095-8312.2003.00183.x

    Article  Google Scholar 

  • Klekowski EJ Jr (1976) Mutational load in a fern population growing in a polluted environment. Am J Bot 63(7):1024–1030

    Article  Google Scholar 

  • Klekowski EJ Jr (1984) Mutational lead in clonal plants: a study of two fern species. Evolution 38(2):417–426

    Article  Google Scholar 

  • Klekowski EJ Jr, Klekowski E (1982) Mutation in ferns growing in an environment contaminated with polychlorinated biphenyls. Am J Bot 69(5):721–727

    Article  CAS  Google Scholar 

  • Klekowski EJ, Kazarinova-Fukshansky N (1984) Shoot apical meristems and mutation: fixation of selectively neutral cell genotypes. Am J Bot 71:22–27

    Article  Google Scholar 

  • Klinkhamer L (2020) A mutation from Hosta ‘Lady in Red’ from my good friend Arie Blom. https://www.facebook.com/groups/2248595978/posts/10158507814200979/

  • Knuth M (1962) Mutation durch Rontgenbestrahlung auch bei Grunpflanzen moglich. Dtsch Gartenbau 9(6):162–164

    Google Scholar 

  • Kobayashi N, Sakamoto S, Nakatsuka A, Hase Y, Narumi I (2007) Mutation induction in Azalea using ion beam irradiation and its gene analysis. JAEA-review 2007-060-87

    Google Scholar 

  • Kobayashi N, Tasaki K, Kano S, Sakamoto S, Nakatsuka A, Hase Y, Narumi I (2008/2007) Mutation induction in Azalea seedlings using ion beam irradiation. JAEA-review 2008-055, p 70

    Google Scholar 

  • Kobayashi N, Tasaki K, Kano S, Sakamoto S, Nakatsuka A, Hase Y, Narumi I (2009) Mutation induction in azalea seedling using ion beam irradiation. JAEA Takasaki annual report 2007, p 70

    Google Scholar 

  • Kobayashi N, Sasaki S, Tasaki K, Nakatsuka A, Nozawa S, Hase Y, Narumi I (2011) Effect of ion beam irradiation for Asclepias species. JAEA Takasaki annual report 2009, p 67

    Google Scholar 

  • Kodama M, Tanabe Y, Hirano T, Abe T (2015) Development of flower form and colour mutant of Hydrangea macrophylla by heavy-ion beam irradiation. Hortic Res 14(suppl 1):419

    Google Scholar 

  • Koh YC, Davies FT Jr (2000) Mutagenesis and in-vitro culture of Tillandsia fasciculata Swartz var. fasciculata (Bromeliaceae). Sci Hortic 87:225–240

    Article  Google Scholar 

  • Koh YC, Davies T Jr (2001) Mutagenesis and in vitro culture of Tillandsia fasciculata Swartz var. fasciculata (Bromeliaceae). Sci Hortic 87:225–240

    Article  CAS  Google Scholar 

  • Kolar F, Pawar N, Dixit G (2011) Induced chlorophyll mutations in Delphinium malabaricum (Huth) Munz. J Appl Hortic 13(1):18–24

    Article  Google Scholar 

  • Kolar FR, Pai SR, Dixit GB (2013) EMS, sodium azide and gamma rays induced meiotic anomalies in Delphinium malabaricum (Huth) Munz. Isr J Plant Sci 61(1–4):64. https://doi.org/10.1080/07929978.2014.961395

    Article  Google Scholar 

  • Kolar F, Ghatge-Patil SR, Nimbalkar M, Dixit GB (2015) Mutational changes in Delphinium malabaricum (Huth.) Munz.: a potential ornamental plant. J Hortic Res 23(2):5–15. https://doi.org/10.2478/johr-2015-0012

    Article  CAS  Google Scholar 

  • Kolar FR, Ghatge SR, Kudale SS et al (2020) RP-HPLC analysis of delphinidin content in flower colour mutants of Delphinium malabaricum (Huth) Munz. In: Research interventions and advancements in plant sciences. ISBN: 978-93-88901-14-7

    Google Scholar 

  • Kole PC, Meher SK (2005) Effect of gamma rays of some quantitative and qualitative characters in zinnia Zinnia elegans N.J. Jacguin in M1 generation. J Ornam Hortic 8(4):303–305

    Google Scholar 

  • Kondo M, Koike Y, Hase Y, Yokota Y, Kobayashi H (2007) Induction of mutations by the ion beam irradiation to the bulb-scales of Lilium cv. Acapulco. JAEA-review 2007-060 3-09, p 75

    Google Scholar 

  • Kondo E, Hase Y, Narumi I, Ishizaka H (2008a) Mutation induction by ion-beam irradiation in fragrance Cyclamen (Cyclamen persicum × C. purpurascens). JAEA-review 2008-055, p 79

    Google Scholar 

  • Kondo M, Koike Y, Okuhara H, Oda M, Hase Y, Yoshihara R, Kobayashi H (2008b) Induction of mutations affecting pollen formation by ion beam irradiation to Lilium × formolongi hort (cv. White Aga). JAEA Takasaki annual report 2007, p 67

    Google Scholar 

  • Kondo E, Nakayama M, Takamura T, Kurihara Y, Saotome T, Hase Y, Tanaka A, Ishizaka H (2009a) Flower pigments and volatile compounds of mutant obtained from fragrant cyclamen (Cyclamen persicum × C. purpurascens) by ion beam irradiation. Hortic Res 8(suppl 2):273

    Google Scholar 

  • Kondo E, Nakayama M, Kameari N, Tanikawa N, Morita Y, Akita Y, Hase Y, Tanaka A, Ishizaka H (2009b) Red-purple flower due to delphinidin 3,5-diglucoside, a novel pigment for Cyclamen spp., generated by ion-beam irradiation. Plant Biotechnol 26:565–569. https://doi.org/10.5511/plantbiotechnology.26.565

    Article  CAS  Google Scholar 

  • Kondo E, Nakayama M, Kameari N, Kurihara Y, Tanikawa N, Morita Y, Akita Y, Hase Y, Tanaka A, Ishizaka H (2010) Analyses of flower pigments and volatile compounds of white mutants generated by ion beam irradiation from fragrant purple Cyclamen ‘Kokou-no-kaori’ (Cyclamen persicum × C. purpurascens). Hortic Res 9(suppl 2):255

    Google Scholar 

  • Kondo E, Nakayama M, Kameari N, Kurihara Y, Tanikawa N, Morita Y, Akita Y, Hase Y, Tanaka A, Ishizaka H (2011) Analyses of flower pigments and volatile compounds of red-purple mutants generated by ion beam irradiation from fragrant purple cyclamen ‘Kaori-no-mai’ (Cyclamen persicum × C. purpurascens). Hortic Res 10(suppl 2):219

    Google Scholar 

  • Konzak CF, Randolph LF (1956) Radiation and iris breeding. Bull Am Iris Soc 142:68–76

    Google Scholar 

  • Koo FKS, Cuevas-Ruiz J (1974) Induction of somatic mutations in Jerusalem thorn (Euphorbia splendens Bojeri). Mutat Breed Newsl 3:13

    Google Scholar 

  • Kozlowska-kalisz J (1979) Influence of ionizing radiation on biological activity of endogenous growth regulators in orchids/cymbidium/in tissue culture. Acta Hortic 91(1):261–286

    Article  Google Scholar 

  • Kruczkowska H, Pawlowska H, Skucinska B (1997) Effect of EMS and sodium azide on callus culture and plant regeneration in Portulaca grandiflora (Hook). Mutat Breed Newsl 43:12–13

    Google Scholar 

  • Krumbiegel G (1979) Response of haploid and diploid protoplasts from Datura innoxia Mill. and Petunia hybrida L. to treatment with X-rays and a chemical mutagen. Environ Exp Bot 19:99–103. https://doi.org/10.1016/0098-8472(79)90014-5

    Article  Google Scholar 

  • Kuang AIC (1999) Effects of gamma irradiation on in vitro cultures of selected orchid hybrids. M.Sc. Thesis, University Putra Malaysia, Serdang

    Google Scholar 

  • Kudo N, Iizuka M, Kimura Y, Tanaka Y, Shikazono N, Watanabe H (1998) Induction of mutation in strawberry and hydrangea by ion beam irradiation: effects of ion beam irradiation on shoot regeneration of strawberry callus and germination of hydrangea seed. In: Tanaka R, Saido M, Nashiyama I, Naramoto H, Suwa T, Morita Y, Toraishi A, Watanabe H, Tani M, Tajima S, Okada S (eds) TIARA annual report 1997, no. 98-016: 30-31. JAERI, Tokai, pp 62–64

    Google Scholar 

  • Kukimura H, Ikeda F, Fujita H et al (1975) Genetic, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plants. In: Improvement of vegetatively propagated plants through induced mutations, Tokai, 1974. IAEA, Vienna, pp 83–104

    Google Scholar 

  • Kukimura H, Ikeda F, Fujita H, Maeta T, Nakajima K, Katagiri K, Nakahira K, Somegou M (1976) Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plant. In: International Atomic Energy Agency (ed) Improvement of vegetatively propagated plants and tree crops through induced mutations. International Atomic Energy Agency, Vienna, pp 93–137

    Google Scholar 

  • Kuleshov G, Bekhtin N, Williams WR (1974) Chemical mutagenesis in perennial grass breeding. In: Iglovikov VG, Movsisyants AP (Eds) Proceedings of the XII interantional grassland congress, Moscow III(II), pp 812–816

    Google Scholar 

  • Kulkarni RN, Baskaran S (2003) Inheritance of resistance to Pythium dieback in the medicinal plant, periwinkle. Plant Breed 122:184–187

    Article  Google Scholar 

  • Kulkarni RN, Baskaran K (2008) Inheritance of pollen-less anthers and “Thrum” and“Pin” flowers in periwinkle. J Hered 99(4):426–431

    Article  CAS  Google Scholar 

  • Kulkarni RN, Suresh N (1999) Inheritance of characters in periwinkle: leaf pubescence and corolla colour. J Herbs Spices Med 6:85–88

    Article  Google Scholar 

  • Kulkarni RN, Bhaskaran K, Chandrasekhara RS, Kumar S (1999) Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed 118(1):71–74

    Article  CAS  Google Scholar 

  • Kumar PRR, Ratnam SV (2010) Macro and micro-morphological mutants in varieties of sunflower (Helianthus annuus L.) by using gamma-rays, sodium azide and combined treatment. Int J Plant Sci 5(2):528–534. ISSN: 0973-1547. Record Number: 20103327448

    Google Scholar 

  • Kumar N, Sambandamurthu S, Khader JMA (1983) Sensitivity of Jasminum grandiflorum cuttings to gamma irradiation. South Indian Hortic 31(4/5):250–251

    Google Scholar 

  • Kumar S, Rai SP, Kumar SR, Singh D, Srivastava S, Mishra RK (2007) Plant variety of Catharanthus roseus named ‘lli’. United States Patent PP18315;2007

    Google Scholar 

  • Kumar M, Kumar V, Solanki RB (2008) Induction of mutation in Acalypha (Acalypha tricolor L.) through gamma ras. IN: International symposium on induced mutations in plants (ISIM); Vienna (Austria); 12-15 Aug 2008. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Plant Breeding Section, Vienna (Austria), p 129, 207p. IAEA-CN--167-331P

    Google Scholar 

  • Kurniati R (2004) Genetic diversity induction of Phalaenopsis hinamatsuri x Doritaenopsis modern Beauty and Phalaenopsis Taipei Gold’ GS’ using gamma ray radiation. Bogor Agriculture Institute, Bogor

    Google Scholar 

  • Kwon HJ, Lim JH, Woo SM, Hwang MJ, Pyo SH, Woo JS (2009) Mutant breeding of ornamental trees for creating variations with high value using proton beam. KAERI, 44p. KAERI/CM--1111/2008

    Google Scholar 

  • Lama S, Aeksomtramaet L, Kanchanapoom K (2005) Induced mutation in Nelumbo nucifera Gaertn. by gamma irradiation. In: Conference: 31. Congress on Science and Technology of Thailand, Nakhon Ratchasima (Thailand), 18–20 Oct 2005. Report Number: INIS-TH-100

    Google Scholar 

  • Land JB, Whittington WJ, Norton G (1971) Environment dependent chlorosis in a mutant plant of Festuca pratensis, Huds. Ann Bot New Ser 35(141):605–613

    Article  Google Scholar 

  • Laneri U, Franconi R, Altavista P (1990) Somatic mutagenesis of Gerbera jamesonii Hybr.: irradiation and in vitro culture. Acta Hortic 280:395–402. https://doi.org/10.17660/ActaHortic.1990.280.64

    Article  Google Scholar 

  • Lantin B, Decourtye L (1970) Obtention de types nouvxis chez le Dahlia par mutations provoquees. Lien Hortic 7. Rev Fr Maraichage Hortic. Pepiniere, No 99:5875–5878

    Google Scholar 

  • Lapade AG, Veluz AMS, Marbella LJ, Rama MG (2001) Induced mutation and in vitro culture techniques for the genetic improvement of ornamentals. Phil Nucl J 13:23–31

    Google Scholar 

  • Largon V, Lyakh V (2002) Mutation variability in M2 in Linum grandiflorum Desf. Under influence of ethylmethane sulfonate. Mutation spectrum Visnyak Zaporizhzhia State University 34(1):124–129

    Google Scholar 

  • Lata P, Gupta MN (1971) Morphological and cytological studies on gamma ray induced mutants of perennial Portulaca grandiflora. Jpn J Breed 21(3):121–128

    Article  Google Scholar 

  • Latado RR, Tulman Neto A (1996) Use of gamma rays in mutation breeding of Calathea louisae cv Albertii. Braz J Gen 19:197

    Google Scholar 

  • Latha S, Dharmatti PR (2018) Gamma rays induced mutation studies in marigold Cv. double orange in M1 generation. Int J Pure Appl Biosci 6(3):443–447. ISSN: 2320 – 7051. https://doi.org/10.18782/2320-7051.5380

  • Lavanya V, Ganga M, Rajamani K, Meenakumari B, Gnanam R (2022) The efficiency of gamma irradiation and ethyl methane sulphonate in inducing variations in Jasminum auriculatum Vahl. J Appl Nat Sci 14(4):1163–1168. https://doi.org/10.31018/jans.v14i4.3761

    Article  CAS  Google Scholar 

  • Lawrence WJC (1931) Mutation or segregation in the octoploid Dahlia variabilis. J Genet 24:308–325

    Article  Google Scholar 

  • Lawrence WJC (1942) The origin of the Garden Dahlia, 1942. Hortus Print, Burnley

    Google Scholar 

  • Lee YM, Jo YD, Lee HJ et al (2015) DNA damage and oxidative stress induced by proton beam in Cymbidium hybrid. Hortic Environ Biotechnol 56:240–246

    Article  CAS  Google Scholar 

  • Lee YM, Lee HJ, Kim YS et al (2016) Evaluation of the sensitivity to ionizing -radiation of a Cymbidium hybrid. J Hortic Sci Biotech 91:109–116

    Article  CAS  Google Scholar 

  • Lee SR, Kim K, Lee BY et al (2019) Complete chloroplast genomes of all six Hosta species occurring in Korea: molecular structures, comparative, and phylogenetic analyses. BMC Genomics 20:833. https://doi.org/10.1186/s12864-019-6215-y

    Article  CAS  PubMed Central  Google Scholar 

  • Lenawaty DY, Sukma D, Syukur M, Suprapta DN, Nurcholis W, Aisyah SI (2022) Increasing the diversity of marigold (Tagetes sp.) by acute and chronic chemical induced mutation of EMS (Ethyl Methane Sulfonate). Biodiversitas 23(3):1399–1407. E-ISSN: 2085-4722. https://doi.org/10.13057/biodiv/d230326

    Article  Google Scholar 

  • Lev-Yadun S, Flaishman MA, Atzmon N (2004) Nonchimeric variegated mutation in Cupressus sempervirens L. Int J Plant Sci 165(2):257–261

    Article  Google Scholar 

  • Li XL, An D (2009) Induction and identification of autotetraploids in Dendrobium. Hortic J 8:1239–1242

    CAS  Google Scholar 

  • Li R, Bruneau AH, Qu R (2010) Morphological mutants of St. Augustinegrass induced by gamma ray irradiation. Plant Breed 129(4):412–416. https://doi.org/10.1111/j.1439-0523.2009.01735.x

    Article  Google Scholar 

  • Li Y, Zhang Z, Wang P, Wang S, Ma L, Li L, Yang R, Ma Y, Wang Q (2015) Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genom 37:851–863. https://doi.org/10.1007/s13258-015-0317-y

    Article  CAS  Google Scholar 

  • Li R, Fan L, Lin J, Li M, Liu D, Sui S (2019) In vitro mutagenesis followed by polymorphism detection using start codon targeted markers to engineer brown spot resistance in Kalanchoe. Am Soc Hortic Sci 144(3):193–200. https://doi.org/10.21273/JASHS04571-18

    Article  Google Scholar 

  • Li F, Mo X, Wu L, Yang C (2020) A novel double-flowered cultivar of Gypsophila paniculata mutagenized by 60Co γ-ray. Am Soc Hortic Sci 55(9):1531–1532. https://doi.org/10.21273/HORTSCI15137-20

    Article  Google Scholar 

  • Li C, Dong N, Zhao Y, Wu S, Liu Z, Zha J (2021a) A review for the breeding of orchids: current achievements and prospects. Hortic Plant J 7(1). https://doi.org/10.1016/j.hpj.2021.02.006

  • Li Y-r, Liu L, Wang D, Chen L, Chen H (2021b) Biological effects of the electron beam to target turning X-ray (EBTTX) on two freesias (Freesia hybrida) cultivars. PeerJ 9:e10742. https://doi.org/10.7717/peerj.10742

    Article  PubMed Central  Google Scholar 

  • Li Y, Chen L, Zhan X, Liu L, Feng F, Guo Z, Wang D, Chen H (2022) Biological effects of gamma-ray radiation on tulip (Tulipa gesneriana L.). PeerJ 10:e12792. https://doi.org/10.7717/peerj.12792

    Article  CAS  PubMed Central  Google Scholar 

  • Lin WC, Molnar JM (1983) Riger elatior begonia ‘Saanred’. Can J Plant Sci 63(2):563–564

    Article  Google Scholar 

  • Lin T, Zhou R, Bi B et al (2020) Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant. Sci Rep 10:18913. https://doi.org/10.1038/s41598-020-75421-x

    Article  CAS  PubMed Central  Google Scholar 

  • Linderman A (1968) Mutationen bei Elatiorbegonien Rasse Rieger. Gartenwelt 68:266–267

    Google Scholar 

  • Lineberger RD, Druckenbrod M (1985) Chimeral nature of the pinwheel flowering African violets (Saintpaulia; Gesneriaceae). Am J Bot 72:1204–1212

    Article  Google Scholar 

  • Ling L, Dan W, Yirui L, Kelian M, Min C, Jiwen Z, Shanwen D, Qing L, Yi X, Wei LJ (2019) The biological effects of 60Co-γ rays on Freesia refracta. J Nan**g For Univ 43(1):186–192. ISSN: 1000-2006. http://njlydxxb.periodicals.net.cn/de

    Google Scholar 

  • Liu Y, Chaturvedi P, **lei F, Qingqing C, Weckwerth W, Yang P (2016) Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 131(10):61–70. https://doi.org/10.1016/j.jprot.2015.10.010

    Article  CAS  Google Scholar 

  • Liu Q, Zhang D, Liu F et al (2019) Micropropagation of Nelumbo nucifera ‘Weishan Hong’ through germfree mature embryos. In Vitro Cell Dev Biol Plant 55:305–312. https://doi.org/10.1007/s11627-019-09984-4

    Article  CAS  Google Scholar 

  • Lizuka M, Ikeda A (1963) Effects of x-ray irradiation on Lilium formosanum. Proc Am Soc Hortic Sci 82:508–516

    Google Scholar 

  • Lizuka M, Kimura Y, Hase Y, Tanaka A (2007) Development of commercial variety of Osteospermum by a stepwise mutagenesis by ion beam irradiation. JAEA-review 2007-060 3-05, p 71

    Google Scholar 

  • Lizuka M, Kimura Y, Okada T, Hase Y, Tanaka A, Sekiguchi M (2011) A new cultivar ‘Viento Flamingo’ of Osteospermum. Bull Gunma Agric Tech Cent 8:89–92

    Google Scholar 

  • Loh PT, Cooper DC (1966) Effects of gamma-irradiation on the pollen of Lilium rugale. Can J Genet Cytol 8(1):152–164. https://doi.org/10.1139/g66-020

    Article  Google Scholar 

  • López-Martínez MI, Robledo-Paz A, Flores-Hernández LA, Corona-Torres T, Gutiérrez-Espinosa MA, Hernández-Rodríguez M, García-de los Santos G (2022) In vitro mutagenesis in anthurium induced by colchicine. Rev Cha**o Ser Hortic 28(1):Cha**o ene./abr. 2022. https://doi.org/10.5154/r.rchsh.2021.06.011

  • Love JE (1966) Some effects of fast neutron irradiation on the somatic tissue of poinsettia. Proc Am Soc Hortic Sci 89:672–676

    Google Scholar 

  • Love JE (1972) Somatic mutation induction in poinsettia and sweet potato. In: Constantin MJ (ed) Mutattion breeding workshop, Knoxville. University of Tennessee, Knoxville

    Google Scholar 

  • Love JE, Constantin MJ (1965) The response of some ornamental plants to fast neutrons. Tenn Farm Home Sci 56:10–12

    Google Scholar 

  • Love JE, Constantin MJ (1966) The induction of bud sports in Coleus blumei by fast neutrons. Process Am Soc Hortic Sci 88:627–630

    Google Scholar 

  • Love JE, Malone BB (1967) Anthocyanin pigments in mutant and non-mutant Coleus plants. Radiat Bot 7:549–552

    CAS  Google Scholar 

  • Love JE, Mullenax RH (1964) Exposure of coleus plants to gamma irradiation. Tenn Farm Home Sci 50:18–19

    Google Scholar 

  • Lu G, Zhang XY, Zou YJ, Zou QC, **ang X, Cao JS (2007) Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers. Plant Cell Tiss Org Cult 88:319–327

    Article  CAS  Google Scholar 

  • Lu S, Wang Z, Niu Y, Chen Y, Chen H, Fan Z, Lin J, Yan K, Guo Z, Li H (2009) Gamma-ray radiation induced dwarf mutants of turf-type bermudagrass. Plant Breed 128:205–209

    Article  Google Scholar 

  • Luan LQ, Uyen NHP, Ha VTT (2012) In vitro mutation breeding of Paphipedilum by ionizing radiation. Sci Hortic 144:1–9

    Article  CAS  Google Scholar 

  • Lyakh V, Lagron V (2005) Induced mutation variability in Linum grandiflorum Desf. Mutat Breed Newsl Rev 1:4–5. https://inis.iaea.org/search/search.aspx?orig_q=RN:36105145

    Google Scholar 

  • Ma TH, Cabrera GL, Cebulska-Wasilewska A, Chen R, Loarca F, Vandenberg AL, Salamone MF (1994) Tradescantia stamen hair mutation bioassay. Mutat Res 310(2):211–220. https://doi.org/10.1016/0027-5107(94)90114-7

    Article  CAS  Google Scholar 

  • Ma J, Li Z, Lin Y (2023) Integrating multi-omics analysis reveals the regulatory mechanisms of white–violet mutant flowers in grape Hyacinth (Muscari latifolium). Int J Mol Sci 24(5):5044. https://doi.org/10.3390/ijms24055044

    Article  CAS  PubMed Central  Google Scholar 

  • Maeta T, Somegou M, Nakahira K, Miyarzaki Y, Kondo T (1982) Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don). In: Induced muttions in vegetatively propagated plants II. IAEA, Vienna, pp 281–304

    Google Scholar 

  • Magd el Din FR (2019) Inducing some morphological variations in Cyperus alternifolius L. by using gamma irradiation. J Adv Agric Res 24(2):178–192

    Google Scholar 

  • Mahna SK, Garg R (1989) Induced mutation in Petunia nyctaginiflora Juss. Biol Plant 31:152–155

    Article  Google Scholar 

  • Majumder J, Singh SK, Verma M (2018a) Assessment of mutation in marigold (Tagetes erecta L.) using morphological and molecular markers. Int J Curr Microbiol Appl Sci 7(7):2588–2597. https://doi.org/10.20546/ijcmas.2018.707.303. ISSN: 2319-7706. http://www.ijcmas.com

    Article  CAS  Google Scholar 

  • Majumder J, Singh SK, Kumari M, Verma M (2018b) Variability and correlation studies on induced mutants of marigold (Tagetes erecta L.) for different traits and assessing them using molecular markers. Plant Tissue Cult Biotechnol 28(2):223–223. ISSN 1817-3721, E-ISSN 1818-8745

    Article  Google Scholar 

  • Mangaiyarkarasi R, Girija M, Gnanamurthy S (2014) Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in Catharanthus roseus. Int J Curr Microbiol App Sci 3(5):881–889

    Google Scholar 

  • Matsubara H (1982) Mutation breeding in ornamental plants. Techniques used for radiation induced mutants in Begonia, Chrysanthemum, Abelia and winter Daphne. Gamma Field Symp 21:65–68

    Google Scholar 

  • Matsubara H, Iba S, Oka M, et al (1965) Effects of gamma-irradiation on tulip. II. Effects on various stages of development. Tokyo Metropolitan Isotope Centre, Annual Report, vol 2, pp 157–162

    Google Scholar 

  • Matsubara H, Shigematsu K, Suda H, et al (1971) The isolation of the mutated plants from sectorial chimera induced by irradiation in Begonia and Chrysanthemum. In: Japan Atomic Industrial Forum (ed) Proceedigns of the 10th Japan conferences on radioisotoper. Tokyo Metropolitan Isotope Research Center, Tokyo, pp 374–376

    Google Scholar 

  • Matsubara H, Shigenmatsu K, Suda H (1974) The isolation and fixation of wholly mutant plant from sectorial chimera induced by gamma irradiation in Begonia rex. J Jpn Soc Hortic Sci 43(1):63–68. https://doi.org/10.2503/jjshs.43.63

    Article  Google Scholar 

  • Matsubara H, Suda H, Sawada T et al (1975) An ozone-sensitive strain from the mutants induced by gamma ray irradiation of the Begonia rex, variety Winter Queen. Agric Hortic 50(6):811–812

    Google Scholar 

  • Matsubara H, Shigenmatsu K, Suda H et al (1976) Useful mutant strains obtained by irradiation breeding. Annual report of Tokyo Metropolitan Isotope Research Center 1975, pp 67–69

    Google Scholar 

  • Matsuda G (1960) Studies on the breeding of the special plants in the cold districts utilizing radioisotopes. I. Effects of gamma irradiation on tulip. Bull Toyama Agric Exp Stn I

    Google Scholar 

  • Maynard RCI, John MR (2023) Mutation breeding of Salvia coccinea with ethyl methanesulfonate. HortScience 58(5):568–572. https://doi.org/10.21273/HORTSCI17092-23

    Article  CAS  Google Scholar 

  • Maynard RCI, Ruter JM (2023) Mutation breeding of Salvia coccinea with Ethyl Methanesulfonate. Am Soc Hortic Sci 58(5):568–572. https://doi.org/10.21273/HORTSCI17092-23

    Article  CAS  Google Scholar 

  • Mehlquist GAL, Sagawa Y (1959) The effect of gamma radiation on carnations. Proc Int Bot Congr 9(11):258

    Google Scholar 

  • Mehlquist GAL, Sagawa Y (1964) The effect of gamma radiation on carnations. Proc Int Hortic Congr 16(4):10–18

    Google Scholar 

  • Mehlquist GAL, Ober DE, Sagawa Y (1954) Somatic mutations in the carnations (Dianthus caryophyllus l.). Proc Natl Acad Sci U S A 40:432–436

    Article  CAS  PubMed Central  Google Scholar 

  • Mekala P (2009) Improvement of Jasminum sambac cv. Gundumalli (Ait.) through mutation breeding. MSc. Thesis submitted to Tamil Nadu Agricultural University

    Google Scholar 

  • Mekala Kumar PN, Kannan M, Vijayakumar G, Jawaharlal M (2010) Effect of physical and chemical mutagen on floral characters of J. sambac cv. Gundumalli. Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19-21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, India, Abstract No. 2.50: 37

    Google Scholar 

  • Melati MR, Alaimo MG, Orecchio S, De Vita F (2004) Stress-induced cytological and chemical adapt at ions in Cupressus plant s from an urban area of Palermo (Italy). Acta Bot Gallica 151(3):265–283. https://doi.org/10.1080/12538078.2004.1051542

    Article  CAS  Google Scholar 

  • Mendoza-Gómez RJ, Tapia-Campos E, Barba-Gonzalez R (2020) In vitro mutagenesis efficiency with EMS (ethyl methanesulfonate) on Eustoma grandiflorum. Acta Hortic 1288:163–166. https://doi.org/10.17660/ActaHortic.2020.1288.24

    Article  Google Scholar 

  • Mericle LW, Mericle HP (1967) Genetic nature of somatic mutations for flower color in Tradescantia, Clone 02. Radiat Bot 7:449

    Google Scholar 

  • Meshitsuka G et al (1962) Effects of gamma irradiation on tulip I. Effects of bulb irradiation after completion of the flowerbud differentiation. Tokyo Metropolitan Isotope Center annu report, vol 1, pp 86–96

    Google Scholar 

  • Mikkelson EP (1976) Histology of adventitious shoot and root formation on leaf petiole cuttings of Begonia x hiemalis Fotsch cv. Aphrodite Peach. Thesis, Michigan State University, East Lansing, 36p

    Google Scholar 

  • Mikkelson JC, Ryan J, Constantin MJ (1975) Mutation breeding of Rieger’s elatior begonias. Am Hortic 54(3):18–21

    Google Scholar 

  • Minisi FA, El-Mahrouk ME, Rida ME et al (2013) Effects of gamma radiation on germination, growth characteristics and morphological variation of Moluccella laevis L. Am Eur J Agric Environ Sci 13(5):696–704

    Google Scholar 

  • Mishra P, Kumar S (2003) Manifestation of heterostyled character by induction of recessive hsf mutation responsible for thrum type herkogamous flowers in Catharanthus roseus. JMAPS 28:2

    Google Scholar 

  • Mistry V, Tiwari P, Patel P, Vishwakarma GS, Lee G-J, Sharma A (2022) Ethyl methane sulfonate and sodium azide-mediated chemical and X-ray-mediated physical mutagenesis positively regulate Peroxidase 1 gene activity and biosynthesis of antineoplastic vinblastine in Catharanthus roseus. Plants 11(2):2885. https://doi.org/10.3390/plants11212885

    Article  CAS  PubMed Central  Google Scholar 

  • Mitra S (1958) Effects of x-rays on chromosomes of Lilium longiflorum during meiosis. Genetics 43(6):771–789

    Article  CAS  PubMed Central  Google Scholar 

  • Miyazaki K, Suzuki K, Abe T, Katsumoto Y, Yoshida S, Kusumi T (2002) Isolation of variegated mutants of Petunia hybrida using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:130

    Google Scholar 

  • Miyazaki K, Suzuki K, Iwaki K, Kusumi T, Abe T, Yoshida S, Fukui H (2006) Flower pigment mutations induced by heavy ion beam irradiation in an interspecific hybrid of Torenia. Plant Biotechnol 23:163–167. https://doi.org/10.5511/plantbiotechnology.23.163

    Article  CAS  Google Scholar 

  • Moghaddam ZS, Moshtaghi N, Bagheri A (2019) The effect of mutation on micropropagation of Crocus sativus L. Plant Cell Biotechnol Mol Biol 20(23-24):1059–1065

    Google Scholar 

  • Mohamad A, Halim AA, Ibrahim R (2002) Mutation induction of Blechnum gibium a fern species through in vitro propagation. In: Proceedings of the seminar MINT R and D 2002: strengthening R and D culture for technology generation, 2002

    Google Scholar 

  • Mohammed MMO, Abdul-Kader HA, Esho KB (2022) Induction of mutation by treatment with colchicine and spraying with progesterone for two cultivars of Zinnia elegans by using DNA molecular. Int J Health Sci 6(S9):2927–2951. https://doi.org/10.53730/ijhs.v6nS9.13159

    Article  Google Scholar 

  • Mohd Nazir B, Sakinah A (2001) Molecular techniques as complementary tools in orchid mutagenesis. In: Proceedings of the 2001 FNCA workshop on agriculture: plant mutation breeding & biofertilizer, 20–24 Aug, Bangkok, Thailand. JAERI, pp 91–102

    Google Scholar 

  • Mohd Nazir B, Sakinah A, Affrida AH, Zaiton A, Tanaka A, Shikazono N, Oono Y, Hasc Y (2003) Mutation induction in orchids using ion beam, TIARA annual report 2003. JAERI-review 2004-025, pp 45–47

    Google Scholar 

  • Mohd A, Baharun AHB, Juraimi AS, Alam MA et al (2016) Morphological traits alteration of mutant common turf grass (Cynodon dactylon) induced by gamma ray irradiation. Res J Biotechnol 11(12):93–105

    Google Scholar 

  • de Mol van Oud Loosdrecht WE (1956) Der Einfluss der Rontgenstrahlen auf die Entwicklung des pollens und der Sprosse bei Tulpen. Mit Ruckblick auf die Wissenschafrliche Lebensarbeit des Verfassers von K.J.J. Thamm. Bayerischer Landwirtschaftsverlag, Bonn

    Google Scholar 

  • Molnar JM (1976) Rieger elatior begonia cv. Northern Sunset. Can J Plant Sci 56:1003. https://doi.org/10.4141/cjps76-169

    Article  Google Scholar 

  • Moore CN, Haskins CP (1935) X-ray induced modifications of flower color in the Petunia. J Hered 26:349–355. https://doi.org/10.1093/oxfordjournals.jhered.a104121

    Article  Google Scholar 

  • Morgan E, Burge GK, Seelye JF (2002) Sandersonia: towards the new generation. Acta Hortic 570. https://doi.org/10.17660/ActaHortic.2002.570.8. ISHS 2002

  • Morgan E, Seelye JF, Hofman BL, Hare PD (2004) Production of triploid Sandersonia aurantiaca plants. South Afr J Bot 70(2):20–214. https://doi.org/10.1016/S0254-6299(15)30237-4

    Article  Google Scholar 

  • Morimoto H, Narumi-Kawasaki T, Takamura T, Fukai S (2019) Analysis of flower color variation in carnation (Dianthus caryophyllus L.) cultivars derived from continuous bud mutations. Hortic J 88:1

    Article  Google Scholar 

  • Mostafa GG, Alfrmawy AM, El-Mokadem HE (2014) Induction of mutations in Celosia argentea using dimethyl sulphate and identification of genetic variation by ISSR markers. Int J Plant Breed Genet 8(2):44–56

    Article  Google Scholar 

  • Muangsorn S, Te-chato S (2008) Use of EMS to induce mutation in Dendrobium friedericksianum Rchb.f. J Agric 24(2):153–15s

    Google Scholar 

  • Muhallilin I, Aisyah S, Sukma D (2019) The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas 20(3):862–866. https://doi.org/10.13057/biodiv/d200333

    Article  Google Scholar 

  • Mukherjee I, Khoshoo TN (1970) Genetic-evolutionary studies on cultivated cannas IV: Parallelism between natural and induced somatic mutations. Radiat Bot 10(4):351–364

    Article  Google Scholar 

  • Mutlu S, Djapo H, Tuncel N et al (2015) Gamma-ray irradiation induces useful morphological variation in Bermudagrass. Not Bot Horti Agrobotanici Cluj-napoca. https://doi.org/10.15835/NBHA4329762. Corpus ID: 85681352

  • Myodo H (1942) Effects of X-rays upon tulip plants when irradiated in different developmental stages of floal organs. J Fac Agric Hokkaido Imp Univ 48:359–382

    Google Scholar 

  • Nagatomi S, Katsumata K, Nojiri C (1993) Induction of dwarf-type plants derived from in vitro cultures by gamma-ray irradiation in Cytisus Genus. Tech News 51:1–2

    Google Scholar 

  • Nagatomi S, Kamiyo M, Narusawa H et al (1996) Three mutant varieties in Eustoma grandiflorum induced through in vitro culture of chronic irradiated plants. Tech News 53:1–2

    Google Scholar 

  • Nakano M, Amano J, Watanabe Y, Nomizu T, Suzuki M, Mizunashi K, Mori S, Kuwayama S, Han D, Saito D, Ryuto H, Fukunishi N, Abe T (2010) Morphological variation in Tricyrtis hirta plants regenerated from heavy ion beam-irradiated embryogenic calluses. Plant Biotechnol. 27:155–160. https://doi.org/10.5511/plantbiotechnology.27.155

    Article  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K et al (2005) Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci 169(5):949–958

    Article  CAS  Google Scholar 

  • Nakayama M, Tanikawa N, Moritaa Y, Ban Y (2012) Comprehensive analyses of anthocyanin and related compounds to understand flower color change in ion-beam mutants of cyclamen (Cyclamen spp.) and carnation (Dianthus caryophyllus). Plant Biotechnol 29:215–221. https://doi.org/10.5511/plantbiotechnology.12.0102a

    Article  CAS  Google Scholar 

  • Nakronthap A (1965) Radiation-induced somatic mutations in the ornamental Canna. Radiat Bot 5(suppl):707–712

    Google Scholar 

  • Nakronthap A (1974) Radiation-induced somatic mutations in Kalanchoe (Kalanchoe lacin iata). Mutat Breed Newsl 3:14

    Google Scholar 

  • Nambisan KMP, Krishnan BM, Veeraragavathatham D et al (1980) Induced mutants in jasmine (Jasminum grandiflorum L.): leaf spot resistant and dwarf mutants. Sci Cult 46:427–428

    Google Scholar 

  • Nauman CH, Underbrink A, Sparrow A (1975) Influence of radiation dose rate on somatic mutation induction in Tradescantia stamen hairs. Radiat Res. https://doi.org/10.2307/3574186. Corpus ID: 28074907

  • Nauman CH, Sparrow AH, Underbrink AG, Schairer LA (1976) Low-dose mutation-response relationships in Tradescantia; principles and comparison to mutagenesis following low-dose gaseous chemical mutagen exposure. [X radiation, neutrons]. Seminar on dose effect relationship in radiobiology; Orsay, France; 24–26 May 1976

    Google Scholar 

  • Nauman CH, Schairer LA, Sautkulis RC, Klug EE (1977) Influence of hyperthermia on the spontaneous, radiation and chemical induced mutation frequency in tradescantia stamen hairs. Radiat Bot 70:632

    Google Scholar 

  • Naveena N, Subramanian S, Jawaharlal M, Iyanar K, Chandrasekhar CN (2020a) Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate on Hibiscus rosa-sinensis L. cultivar red single. Electron J Plant Breed 11(4):1187–1193. https://doi.org/10.37992/2020.1104.191

    Article  Google Scholar 

  • Naveena N, Subramanian S, Jawaharlal M, Iyanar K, Chandrasekhar CN (2020b) Determination of mutagenic sensitivity in Hibiscus rosa-sinensis L. (Cultivar Red Single) to physical and chemical mutagens. Int J Curr Microbiol Appl Sci 9(10):1756–1763. https://doi.org/10.20546/ijcmas.2020.910.213

    Article  CAS  Google Scholar 

  • Nehvi F, Khan MA, Lone A, Yasmin S (2010) Effect of radiation and chemical mutagen on variability in saffron (Crocus sativus L.). Acta Horticu 850(850):67–74. https://doi.org/10.17660/ActaHortic.2010.850.8

    Article  Google Scholar 

  • Nelka SAP, Vidanapathirana NP, Dahanayake N, Subasinghe S, Silva TD, Weerasinghe S, Anuruddhi HIGK (2021) Effect of gamma irradiation on survivability, growth performances and floral characters of Jasminum officinale (Samanpichcha). J Agrotechnol Rural Sci 1(1):24–29. https://doi.org/10.4038/atrsj.v1i1.28

    Article  Google Scholar 

  • Nelson J (1961) Induction of plant tumors by ultraviolet radiation. Proc Natl Acad Sci USA 47:1165–1169

    Article  PubMed Central  Google Scholar 

  • Neto TA, Latado RR, Tsai SM, Derbyshire MT, Yemma AF, Scarpare Felho JA, Cera Volo L, Rossi AC, Namekata T, Pompeu Jr J, Figueiicedo JO, Pio R, Tobias Domngues E (2001) Mutation breeding in vivo and in vitro in vegetatively propagated crops. Source: Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria); 77 p; ISSN 1011-4289; May 2001; pp 55–62; Final research co-ordination meeting on induced mutations in connection with biotechnology for crop improvement in Latin America

    Google Scholar 

  • Nezu M (1962) The effect of radiation on tulip breeding. Gamma Field Symp 1:43–49

    Google Scholar 

  • Nezu M (1963a) Studies on the production of bud sports in tulips by ionizing radiation. III. Frequency and mechanism of color formation. Seiken Jiho 15:75–86

    Google Scholar 

  • Nezu M (1963b) Studies on the production of bud sports in tulips by ionizing radiation. IV. Comparison of color sports by gamma rays with similar virus disease phenomena. Seiken Jiho 15:87–97

    Google Scholar 

  • Nezu M (1964) Studies on the production of bud sports in tulips by ionizing radiation. V. Effects of total dose, fractionation and temperature on somatic mutation. Jpn J Genet 39(6):440–446

    Article  Google Scholar 

  • Nezu M (1965) Studies on the production of bud sports in tulips by ionizing radiation. VI. Selection and observation on the mutant progeny. Jpn J Breed 15(2):13–118

    Article  Google Scholar 

  • Nezu M (1967) Tulip breeding by bud sports induced by gamma rays. Toyama Agric Exp Stn Spec Rep 7:1–74

    Google Scholar 

  • Nezu M, Obata S (1964a) Studies on the production of bud sports in tulips by ionizing radiation. I. Morphology and development of the bulbs. Idengaku Zasshi 38:386–391. [not available]

    Google Scholar 

  • Nezu M, Obata S (1964b) Studies on the production of bud sports in tulips by ionizing radiation. II. Acute and chronic radiation effects on plant growth and bulbil yield. Idengaku Zasshi 38:392–398

    Google Scholar 

  • Nishiguchi M, Nanjo T, Yoshida K (2012) The effects of gamma irradiation on growth and expression of genes encoding DNA repair related proteins in lombardy poplar (Populus nigra var. italica). J Environ Radioact 109:19–28. https://doi.org/10.1016/j.jenvrad.2011.12.024

    Article  CAS  Google Scholar 

  • Nitarska D, Stefanini C, Haselmair-Gosch C et al (2018) The rare orange-red colored Euphorbia pulcherrima cultivar ‘Harvest Orange’ shows a nonsense mutation in a flavonoid 3’-hydroxylase allele expressed in the bracts. BMC Plant Biol 18:216. https://doi.org/10.1186/s12870-018-1424-0

    Article  CAS  PubMed Central  Google Scholar 

  • Niu C, Li Y (1988) The radiation induced mutation of Canna L. Acta Agric Nucl Sin 2:33

    Google Scholar 

  • Norazlina N, Azhar M, Rusli I (2003) Mutation induction and propagation of Asplenium nidus a fern species from spores. In: Challenges in plant productivity and food security in changing environment: proceedings of the 14th Malaysian Society of Plant Physiology Conference 2003

    Google Scholar 

  • Nybom N (1961) The use of induced mutations for the improvement of vegetatively propagated plants. In: Proceedings of symposium on mutations and plant breeding. Cornell University, Ithaca. NAS-NRC, Publication 891, pp 252–294

    Google Scholar 

  • Oates KM, Touchell DH, Ranney TG (2013) Induced variation in tetraploid Rudbeckia subtomentosa ‘Henry Eilers’ regenerated from gamma-irradiated callus. HortScience 48:831–834. https://doi.org/10.21273/HORTSCI.48.7.831

    Article  CAS  Google Scholar 

  • Ocokoljic M, Milosevic B (2004) Somatic mutation of birch (Betula verrucosa Ehrh.) trees. AGRIS Since:319–324

    Google Scholar 

  • Ogawa D, Fujioka T, Hirano T, Abe T (2014) Effect of C-ion beam irradiation on survival rates and flower color mutations in statice (Limonium sinuatum Mill.). RIKEN Accel Prog Rep 47:295

    Google Scholar 

  • Ohba K (1971a) Studies on the radiation breeding of forest trees. Bull Inst Radiat Breed 2. Ohmiya, Ibaraki, 102p

    Google Scholar 

  • Ohba K (1971b) Segregation of spontaneous mutants from Sugi elite clones of Cryptomeria Japonica D. Don Tech News, No. 9. Institute of Radiation Breeding, Ohmiya, Ibaraki

    Google Scholar 

  • Ohba K, Maeta T (1973) Induction of somatic mutations and cross fertility of the mutants in Sugi, Cryptomeria japonica D. Don. Gamma Field Symp 12:19–36

    Google Scholar 

  • Ohba K, Murai M (1966) Studies on radiosensitivity of forest trees 2. Growth and somatic mutations of Alnus, Populus and Betula species under chronic gamma irradiation in a gamma field. J Jpn For Soc 48(1):12–19

    Google Scholar 

  • Ohki S, Sakai Y, Chatani K, Koreeda K (2013) Mutation induction by ion beam in ornamental plants -- effects on seed germination and DNA polymorphism in Eustoma grandiflorum. AGRIS 522:123–126. https://doi.org/10.17660/ActaHortic.2000.522.12. Paper presented at the Twenty-fifth International Horticultural Congress held August 2-7, 1998, Brussels, Belgium. Part 12. Includes references

    Article  Google Scholar 

  • Okada T, Iizuka M, Hase Y, Nozawa I, Narumi I, Sekiguchi M (2012) Development of commercial variety of Osteospermum by a stepwise mutagenesis by ion beam irradiation. Hortic Res 11(suppl 1):428. JAEA-review 2009-041, p 73

    Google Scholar 

  • Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instrum Methods Phys Res B 206:574–578. https://doi.org/10.1016/s0168-583x(03)00835-8

    Article  CAS  Google Scholar 

  • Okamura M, Takeshita D, Hase Y, Narumi I, Tanaka A (2009) New type flower colored petunia obtained by ion beam irradiation at JAEA-TIARA. JAEA Takasaki annual report 2008, p 69

    Google Scholar 

  • Okamura M, Umemoto N, Onishi N (2012) Breeding glittering carnations by an efficient mutagenesis system. Plant Biotechnol 29:209–214

    Article  Google Scholar 

  • Okamura M, Nakayama M, Umemoto N, Cano EA, Hase Y, Nishizaki Y, Sasaki N, Ozeki Y (2013) Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation. Euphytica 2013(191):45–56

    Article  Google Scholar 

  • Olimpienko GS, Titov AF (1979) Cytoplasmic temperature dependent chlorophyll deficient mutants in Festuca pratensis Huds. Mutat Breed Newsl 13:15

    Google Scholar 

  • Omar MS, Yousif DP, Al-Jibrouri JM, Al-Rawi MS, Hameed MK (1993) Effects of gamma rays and sodium chloride on growth and cellular constituents of Sunflower (Helianthus annus) callus cultures. J Islamic Acad Sci 6:69–72

    Google Scholar 

  • Osiecki M (1989) Mutation breeding in Streptocarpus x hybridus. AGRIS 281:73–77

    Google Scholar 

  • Osipova RG, Shevchenko VA (1984) The use of tradescantia (clone 02 and 4430) in the radiation and chemical mutagenesis studies. Zh Obshch Biol 45(2):226

    Google Scholar 

  • Padmapriya S, Rajamani K (2017) Induced mutagenesis in glory lily (Gloriosa superba L.) for economic variability. Int J Phytomed Relat Ind 9(4):231–236. Print ISSN: 0975-4261. Online ISSN: 0975-6892. https://doi.org/10.5958/0975-6892.2017.00037.5

    Article  Google Scholar 

  • Padmapriya S, Rajamani K (2021) Induced chlorophyll mutations in Gloriosa superba. Electron J Plant Breed 12(4):1454–1460. https://www.ejplantbreeding.org/index.php/EJPB/article/view/3824

    Google Scholar 

  • Pal S, Ajit K, Preeti C, Srivastava R, Shailesh T (2017) Determination of lethal dose for gamma rays induced mutagenesis in different cultivars of dahlia. J Hill Agric 8(3):279–282. https://doi.org/10.5958/2230-7338.2017.00055.6

    Article  Google Scholar 

  • Palamine MTL, Cureg RGA, Marbella LJ, Lapade AG, Domingo ZB, Deocaris CC (2005) Some biophysical changes in the chloroplasts of a Dracaena radiation-mutant. Philip J Sci 134(2):121–126. ISSN 0031 – 7683

    Google Scholar 

  • Pallavi B, Nivas S, Hedge S (2017) Gamma rays induced variations in seed germination, growth and phenotypic characteristics of Zinnia elegans var. Dreamland. Adv Hortic Sci. https://doi.org/10.13128/AHS-20289

  • Palta HK, Mehra PN (1973) Radiobiological investigations on Pteris vittata L. II. X-rays effect on the gametophytic generation. Radiat Bot 13:155–164

    Article  Google Scholar 

  • Pan C, Lu Y-F, Wen P-J, Chen Y-M (2019) Using colchicine to create Poinsettia (Euphorbia pulcherrima × Euphorbia cornastra) mutants with various morphological traits. HortScience 54(10):6p. https://doi.org/10.21273/HORTSCI14143-19

    Article  Google Scholar 

  • Pandey R, Pal MB, Nagar A (1987) Colchitetraploidy in Crossandra infundibuliformis Nees. New Bot 14(1-4):73–78

    Google Scholar 

  • Papanicolaou K, Kokkini S (1983) Homoeotic mutation as well as inheritance of hairy sepals and anthers in Ranunculus millefoliatus Vahl. Feddes. Repertorium 94(9/10):631–634. ISSN: 0014-8962. https://agris.fao.org/agris-search/search.do?recordID=US201302136188

    Google Scholar 

  • Paramesh TH, Chowdhury S (2005) Impact of explants and gamma irradiation dosage on in vitro mutagenesis in carnation (Dianthus caryophyllus L.). J Appl Hortic 7:43–45. https://doi.org/10.37855/jah.2005.v07i01.11

    Article  Google Scholar 

  • Parkhi RD, Khalatkar AS (1988) Induced reproductive alterations in Ipomoea purpurea (L) Roth. Plant Cell Incompatibility Newsl 20:8–16

    Google Scholar 

  • Parliman B, Stushnoff C (1979) Mutant induction through adventitious buds of Kohleria. Euphytica 28(2):521–530

    Article  Google Scholar 

  • Partanen CR (1958) Quantitative technique for analysis of radiation induced tumorization in fern prothalli. Science 12:1006–1007

    Article  Google Scholar 

  • Pathak CS, Raghuvanshi SS (1980) Occurrence and significance of polypetalous variant in Phlox drummondii L. Proc Indian Natl Sci Acad B 46(4):524–527

    Google Scholar 

  • Patil S (2015) Mutational changes in Delphinium malabaricum (Huth.) Munz.: a potential ornamental plant. J Hortic Res 4:11p

    Google Scholar 

  • Patil UH, Masalkar SD, Patil AH (2019) Effect of chemical mutagens on growth and flowering of Carnation. J Pharmacogn Phytochem 8(2):1982–1984

    CAS  Google Scholar 

  • Patwibul W, Kongchuensin S, Therdbarame P, Limpanavech P (2001) Effect of gamma rays on some characteristics of climbing lily (Gloriosa superba L.). In: AGRIS. Proceedings of the 12th genetics: gene revolution era. s, Bangkok. ISBN 974-553-922-8, pp 193–196

    Google Scholar 

  • Pederson IF, Dickens R (1985) Registration of AU Centennial Centipedegrass. Crop Sci 25(2):364

    Article  Google Scholar 

  • Pei YR, Di W, Dong L, Huai ZX, Lei S (2018) Radiation breeding of Boston fern via 60Co-γ rays. Acta Hortic Sin 45(5):988–996. http://www.ahs.ac.cn/EN/abstract/abst

    Google Scholar 

  • Pereau-Leroy P (1969) Effect de I’irradiation gamma sur une chimere complexe d’oeillet Sim. In: Induced mutations in plants, Pullman, 1969. IAEA, Vienna, pp 337–344

    Google Scholar 

  • Pereau-Leroy P (1970) Detection par irradiation gamma de I’influence de la structure en chimere pericline d’une variete d’oeillet sur la coloration de la fleur. C R Acad Sci Ser D 270(6):810–812

    Google Scholar 

  • Pereau-Leroy P (1974a) Comparison des effects physiologiques et genetiques provoques par des irradiations aux neutrons et aux yayons gamma de boutures d’oeillets, Dianthus caryophyllus L. In: Biological effects of neutron irradiation, Munich – Neuherberg, 1973. IAEA, Vienna, pp 441–449

    Google Scholar 

  • Pereau-Leroy P (1974b) Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat Bot 14:109–116

    Article  Google Scholar 

  • Pereau-Leroy P (1975) Recherche Radiobiologiques sur des chimeres d’oeillet, Dianthus caryophyllus L. Thesis, Universite de Clermont-Ferrand, Ser E, No. 199, p 169

    Google Scholar 

  • Pierik RML (1975) Callus multiplication of Anthurium andraeanum Lind. in liquid media. Neth J Agric Sci 23:299–302

    Google Scholar 

  • Pierik RML (1976) Anthurium andraeanum plantlets produced from callus tissues cultivated in vitro. Physiol Plant 37:80–82

    Article  Google Scholar 

  • Pierik RML, Steeginans HHM (1978) Vegetative propagation of Anthurium scherzerianum Schott through callua cultufres. Sci Hortic 4(3):291–293

    Article  Google Scholar 

  • Pierik RLM, Van Leeuwen P, Righter GCCM (1979) Regeneration of leaf explants of Anthurium andraeanum Lind. In vitro. Neth J Agric Sci 27:221–226

    CAS  Google Scholar 

  • Pillai PRU, Verma RC (1992) A comparison of induced chromosomal aberrations in Vicia faba and Phlox drummondii. J Cytol Genet 3:17–23

    Google Scholar 

  • Pimonrat P, Suraninpong P (2009) Mutation Induction in S. plicata Blume by gamma irradiation. In: Proceeding of National Horticultural Congress, 6–9 May 2009. The Empress Chiangmai Hotel, Chiang Mai

    Google Scholar 

  • Pimonrat P, Suraninpong P, Wuthisuthimethavee S (2012) Acute effect of gamma radiation on stable characteristics of Spathoglottis plicata Blume. Acta Hortic 953:173–180

    Article  Google Scholar 

  • Plummer TH, Leopold AC (1957) Chemical treatment for bud formation in Saintpaulia. Proc Am Soc Hortic Sci 70:442–444

    CAS  Google Scholar 

  • Pohleim F (1974) Nachweiss von Mischzellen in variegaten Adventivsprossen von Saintpaulia entstanden nach Behandlung isolierter Blatter mit N-nitroso-N-Methylharnstoff. Biol Zentralbl 93:141–148

    Google Scholar 

  • Pohlheim F (1974) Induced plastom mutations in Saintpaulia. Proc Intl Hortic Congr 19(1B):888

    Google Scholar 

  • Pohlheim F (1977) Umlagerungen an der Trichimare Pelargonium zonale ‘Freak of Nature’; ein Beitrag zur Herstellung von Plastommutanten. Wiss Z Padagog Hochsch Potsdam 16:65–70

    Google Scholar 

  • Pohlheim F (1983) Induktion von Polyploide an Adventivsprossen aus Wurzelstecklingen von Eryngium planum L. Wiss Z Pad Hochsch Potsdam 27(1):157–163

    Google Scholar 

  • Pohlheim F, Beger B (1974) Erhohung der Mutationsrate im plastom bei Saintpaulia durch N-Nitroso-N-methylharnstoff. Biologische Rundschau 12:204–206

    CAS  Google Scholar 

  • Pohlheim F, Pohlheim E (1976) Herstellung von plastommutanten bei Saintpaulia ionantha H. Wendl. Biochem Physiol Pflanz 169:377–383

    Article  Google Scholar 

  • Pohlheim E, Pohlheim F, Gunther G (1972) Die haploid Pelargonium zonale ‘Kleiner Liebling’ als Testsystem fur Mutagene. Wiss Z Padagog Hochsch Potsdam 16:65–70

    Google Scholar 

  • Pohlheim E, Pohlheim F, Gunther G (1976) Mutagenicity testing of herbicides with a haploid Pelargonium. In: European environmental mutagenic society, sixth annual meeting, Gernrode, p 131

    Google Scholar 

  • Polheim F (1980) Periklinalchimarische Anthozyamuster bei Saintpaulia ionantha H. Wendl Nach NMH-Behandlung Arch Zuchtungsforsch 10(4):261–269

    Google Scholar 

  • Polheim F (1981) Genetischer Nachweis einer NMH-induzierten Plastommutation bei Saintpaulia ionantha H. Wendl Biol Rundsch 19:47–50

    Google Scholar 

  • Potsch J (1964) The induction of extramutative radiation effects on periclinal chimeras with known constitution of Pelargonium zonale Ait., Euphorbia pulcherrima Willd. and Abutilon hybridum. Horticulture dissertation, 64-1053, Potsdam. 214p

    Google Scholar 

  • Potsch J (1966a) Das Verhalten von Abutilon hybridum hort. ‘Andenken an Bonn’ nach einmaliger und fraktionierter Rontegenbestrahlung. Z Planzenzucht 55:183–200

    Google Scholar 

  • Potsch J (1966b) On the dissociation of chimera shoot variants by the use of x-rays. Induced mutations and their utilization. Gatersleben 301–304

    Google Scholar 

  • Potsch J (1967) On the dissociation of chemical shoot-variants by the use of X-rays. In: Stubbe H (ed) Induced mutations and their utilization. Abh. Dtsche. Akad. Wiss. Berlin KI. Medizin 2, pp 301–304

    Google Scholar 

  • Powell JB (1974) Induced mutations in turfrgrasses as a source of variation for improved cultivars. In: Roberts EC (ed) Proceedings of the 2nd international Turfgrass research conference, Blackburn. American Society of Agronomy and Crop Science Society of America, Madison, pp 3–8

    Google Scholar 

  • Powell JB (1976) Induced mutations in highly heterozygous vegetatively propagated grasses. In: Induced mutations in cross-breeding, Vienna, 1975. IAEA, Vienna, pp 219–224

    Google Scholar 

  • Powell JB, Murray JJ (1978) The vegetative bud mutation technique for breeding improved Poa pratensis L. Landwirtsch Zentralbl II 23(1):Abstr. 0762

    Google Scholar 

  • Powell JB, Toler RW (1980) Induced mutants in ‘Floratam’ St. Augustinegrass Crop Sci 20(5):644–646. https://doi.org/10.2135/cropsci1980.0011183X002000050025x

    Article  Google Scholar 

  • Powell JB, Burton GW, Young JR (1974) Induced mutations in vegetatively propagated turf bermudagrass by gamma irradiation. Crop Sci 14:327–330. https://doi.org/10.2135/cropsci1974.0011183X001400020048x

    Article  Google Scholar 

  • Prabhukumar KM, Thomas VP, Mohanan K (2015) Induced mutation in ornamental gingers (Zingiberaceae) using chemical mutagens viz. colchicine, acridine, and ethyl methanesulphonate. J Hortic For Biotechnol 19:18–27

    Google Scholar 

  • Pratiwi OD (2010) The diversity of plant traits kembang kertas (Zinnia elegans Jacq,) on M2 Generation of X-ray irradiation results. Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta

    Google Scholar 

  • Preil W, Engelhardt M (1982) In vitro Entmischung von Chimarenstrukturen durch Suspensions-kulturen bei Euphorbia pulcherrima Wild. Bartenbauwissenschaft 47(6):241–244

    Google Scholar 

  • Preil W, Walther F (1983) Mutationsinduktion durch bestrahlung von Azaleen. Gb + Gw (Gartnerborse und gartenwelt) 30:788–791

    Google Scholar 

  • Preil W, Engelhardt M, Walther F (1983) Breeding of low temperature tolerant poinsettia (Euphorbia pulcherrima) and Chrysanthemum by means of mutation induction in in vitro culture. Acta Hortic. 131:345–351

    Article  Google Scholar 

  • Privalov GF (1965) Somatical radiomutatons by Acer neguundo L. Bjcell Mosk Obsc Isp. Otd Biol 70(1):153–160

    Google Scholar 

  • Privalov GF (1967) Experimental mutations in woody plants. In: Stubbe H (ed) Induced mutations and their utlization. Erwin Baur Memorial Lectures, 1966, IV. Akademie-Verlag, Berlin, pp 383–386

    Google Scholar 

  • Privalov GF (1968a) Mutability in box-elder (Acer neguundo L.) induced by gamma- and X-rays. Genetika 4(5):39–42

    Google Scholar 

  • Privalov GF (1968b) Investigations of experimental mutagenesis in arboreous plants. Genetika 4(6):144–158

    Google Scholar 

  • Privalov GF (1974) The effect of treating the seeds with auxin on induced mutagenesis in Acer neguundo L. (c.f. Broertjes and Van Harten 1988)

    Google Scholar 

  • Priyanka D, Dhanavel D (2021) Physical and chemical mutagenesis in Hibiscus sabdariffa L. to induce variability on seed germination, survival, and lethal dose. Indian J Nat Sci 12(6):32280–32284

    Google Scholar 

  • Przybyla A (1992) Mutation breeding of Alstroemeria in Poland. Acta Hortic 325:561–566. https://doi.org/10.17660/ActaHortic.1992.325.78. ISHS Acta Horticulturae 325: VI international symposium on flower bulbs

    Article  Google Scholar 

  • Przybyla AA (2000) Mutagenesis in creation of new Alstroemeria genotypes. Acta Hortic. 508:351–356. https://doi.org/10.17660/ActaHortic.2000.508.68

    Article  Google Scholar 

  • Puchooa D (2005) In vitro mutation breeding of Anthurium by gamma radiation. Int J Agric Biol 7(1):11–20

    Google Scholar 

  • Puchooa D, Sookun D (2003) Induced mutation and in vitro culture of Anthurium andreanum. Food and Agricultural Research Council, pp 17–27

    Google Scholar 

  • Purshottam DK, Misra P, Srivastava RK (2021) A mutation study on Gerbera jamesonii: an important ornamental plant. Int J Plant Environ 6(1):91–93. https://doi.org/10.18811/ijpen.v6i01.10

    Article  Google Scholar 

  • Qalby N, Sjahril R, Dachlan A, Akae A (2020) Colchicine induced polyploidy in Common Ice plant Mesembryanthemum crystallinum L. IOP Conf Ser Earth Environ Sci 486:012097. https://doi.org/10.1088/1755-1315/486/1/012097

    Article  Google Scholar 

  • Qiang J-y et al (2005) Effect of (60)Co-γ ray irradiation on germination rate of seed and seedling growth of Celosia cristata. J Anhui Agric Sci, 2005-04

    Google Scholar 

  • Qin W, Wang S, Yang G (1988) The radiation breeding of Freesia. Acta Horticulturae Sinica, 1988-03

    Google Scholar 

  • Raghuvanshi SS, Singh AK (1979) Gamma-ray induced mutants in diploid and autotetraploid perennial Portulaca grandiflora Hook. Indian J Hortic 36(1):84–87. ISSN: 0972-8538. Online ISSN: 0974-0112

    Google Scholar 

  • Raghuvanshi SS, Singh AK (1980) Autotetraploid radiosensitivity with special reference to Portulaca grandiflora Hook. In: Bir SS (ed) Recent researches in plant sciences. Kalyani Publication, New Delhi, pp 347–352

    Google Scholar 

  • Rai SP, Kumar S (2000) Induced mutation to monocotyledon in periwinkle, Catharanthus roseus, and suppression of mutant phenotype by kinetin. Indian Acad Sci 79(3):97–104

    CAS  Google Scholar 

  • Ramesh Kumar PR, Venkat Ratnam S (2009) Chromosomal induced aberrations in Sunflower (Helianthus annuus. L) with gamma-irradiation, sodium azide and combined treatments. Cytologia 74(3):253–258

    Article  Google Scholar 

  • Ramesh Kumar PR, Venkat Ratnam S (2010) Mutagenic effectiveness and efficiency in varieties of sunflower (Helianthus annul L.) by separate and combined treatment with gamma-rays and sodium azide. Afr J Biotechnol 9(39):6517–6521. http://www.academicjournals.org/AJB ISSN 1684-5315

    Google Scholar 

  • Ramesh A, Verma RC (2015) Effect of gamma radiation on chromosome at mitotic division in Phlox drummondii. Int Res J Biol Sci 4(1):82–85. ISSN 2278-3202.

    Google Scholar 

  • Rather ZA, Jhon AQ (1996) Mutational studies in Dutch Iris (Iris hollandica cv. Prof Blaauw). Flora Fauna 2(1):19–21. Accession: 002901519

    Google Scholar 

  • Rather ZA, Jhon AQ (2000) Effect of 60Co gamma rays on Dutch iris. J Ornam Hortic 3(2):71–74. Accession: 003413908

    Google Scholar 

  • Rather ZA, Jhon AQ, Zargar GH (2002) Effect of 60CO gamma rays on Dutch iris-II. J Ornam Hortic 5(2):1–4. Accession: 003723274

    Google Scholar 

  • Relichova J (1984) Induction of somatic mutations in some vegetatively propagated plants. Sb UVTI Genet Slechteni 20(2):85–94

    Google Scholar 

  • Reinert JA, Toler RW, Bruton BD, Busey P (1981) Retention of resistance by mutants of ‘Floratam’ St. Augustinegrass to the southern chinch bug and St. Augustine decline. Crop Sci 21(3):464–466

    Article  Google Scholar 

  • Richter A, Singleton WR (1955) The effect of chronic gamma radiation of the production of somatic mutations in Crnations. Proc Natl Acad Sci 41:295–300

    Article  CAS  PubMed Central  Google Scholar 

  • Rifnas LM, Nisansala V, Silva T, Chathurika M et al (2022) Effects of gamma irradiation on the performances of Acalypha hispida (Cat’s tail plant). In: National symposium on floriculture research (NaSFloR) 2022. Royal Botanical Gardens, Peradeniya

    Google Scholar 

  • Robinson TR (1931) A chimera in the Poinsettia. J Hered 22(11):359

    Article  Google Scholar 

  • Robinson TR, Darrow GM (1929) A pink poinsettia chimera. J Hered 20(7):335–339. https://doi.org/10.1093/oxfordjournals.jhered.a103215. Accession: 029746307

    Article  Google Scholar 

  • Roest S, Bokelmann GS (1981) Vegetatieve vermeerdering van Muscari in kweekbuizen. Vakbl Bloemisterij 36(5):134–135

    Google Scholar 

  • Roest S, Van Berkel MAE, Bokelmann GS et al (1981) The use of an in vitro adventitious bud technique for mutation breeding of Begonia x hiemalis. Euphytica 30(2):381–388. https://doi.org/10.1007/BF00034000

    Article  Google Scholar 

  • Romeida A, Sutjahjo SH, Purwito A et al (2012) Induced mutation by gamma-ray irradiation for the development of superior orchid clones Spathoglottis plicata Blume accession bengkulu. Dissertation, Institut Pertanian Bogor, Bogor

    Google Scholar 

  • Rosna NAH, Azani MT, Mahmad SN (2012) Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic Bras 30(2):252. https://doi.org/10.1590/S0102-05362012000200012

    Article  Google Scholar 

  • Roy RK, Singh C, Verma TS, Banerji BK (2010) Effects of gamma irradiation on Canna generalis cv. ‘Cleopatra’ concerning induction of somatic mutation in foliage and flower color. Abst: National symposium on lifestyle floriculture: challenges and opportunities. session-2, crop improvement, biotechnology, and biodiversity, March 19-21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Abstract No. 2.35: 28–29

    Google Scholar 

  • Roychowdhury R, Tah J (2011a) Chemical mutagenic action on seed germination and related agrometrical traits in M1 Dianthus generation. Curr Bot 2(8):19–23

    CAS  Google Scholar 

  • Roychowdhury R, Tah J (2011b) Assessment of chemical mutagenic effects in mutation breeding programme for M1 generation of carnation (Dianthus caryophyllus). Res Plant Biol 1:23–32

    Google Scholar 

  • Roychowdhury R, Alam MJF, Bishnu S et al (2012) Comparative study for chemical mutagenesis on seed germination, survivability and pollen sterility in M1 and M2 generations of Dianthus. Plant Breed Seed Sci 65(1):29–38. https://doi.org/10.2478/v10129-011-0044-8

    Article  Google Scholar 

  • Sadhukhan R, Ganguly A, Singh PK, Sarkar HK (2014) Study of induced polyploidy in African marigold (Tagetes ecrecta L.). Environ Ecol 32:1219–1222

    Google Scholar 

  • Sagawa Y (1957) Nitrogen as a modifying factor in the growth and flowering responses of carnations to radiation. Plant Physiol 32(supply L):1p

    Google Scholar 

  • Sagawa Y, Mehlquist GAL (1956) The effect of ionizing radiations on carnation Dianthus caryophyllus II. The effect of X- rays on the flower color. Q Prog Rep B 388(29):38–39

    Google Scholar 

  • Sagawa Y, Mehlquist GAL (1957) The mechanism responsible for some X-ray induced changes in flower colour of the carnation, Dianthus caryophyllus. Am J Bot 44(5):397–403

    Google Scholar 

  • Sagawa Y, Mehlquist GAL (1959) Some Xray induced mutants in the carnation: Dianthus caryophyllus. J Hered 50:78–80. https://doi.org/10.1093/oxfordjournals.jhered.a106881

    Article  Google Scholar 

  • Saggoo MIS, Gill A, Walia S (2011) Cytomixis during microsporogenesis in some populations of Croton bonplandianum of North India. Cytologia 76(1):67–72

    Article  Google Scholar 

  • Saito K (1977) Study on induction of irradiated mutants by gamma-rays and their utilization in flower plant breeding. II. On the mutated semi-double flowered wallflower (Cheiranthus cheiri) and whie-flowered moss verbena (Verbena erinoides) induced by gamma-irradiation. J Jpn Soc Hortic Sci 46(3):331–337

    Article  Google Scholar 

  • Sakinah A, Mohd Nazir B (2002) Increasing characteristic variations in Dendrobium orchid through acute irradiation. In: 17th World orchid conference and show, Shah Alam, Malaysia, 26 April–2 May 2002

    Google Scholar 

  • Sakinah A, Affrida AH, Zaiton A et al (2005) Mutation induction of orchids using ion beams. http://www.iaea.org/inis/collection/NCLCcollectionStore/_Public/43/035/43035281.pdf

  • Sakuramoto F, Ichikawa S (1996) Effects of X-ray dose fractionations with various intervals in inducing somatic mutations in the stamen hairs of Tradescantia clone KU 9. J Free Access 71(6):355–361. https://doi.org/10.1266/ggs.71.355

    Article  Google Scholar 

  • Salwee Y, Nehvi Firdos A (2017) Ethyl methane sulphonate-a potent mutagen for inducing genetic variability in saffron (Crocus sativus L.). Appl Biol Res 19(2):164–171. https://doi.org/10.5958/0974-4517.2017.00023.4

    Article  Google Scholar 

  • Samadi N, Naghavi MR, Moratalla-Lopez N, Alonso GL, Shokrpour M (2022) Morphological, molecular and phytochemical variations induced by colchicine and EMS chemical mutagens in Crocus sativus L. Food Chem (Oxf) 30(4):100086. https://doi.org/10.1016/j.fochms.2022.100086

    Article  CAS  Google Scholar 

  • Samata Y, Tsuyuki Y, Inazu K, Lizuka K (1979) Induction of flower colour changes in carnation (Dianthus caryophyllus) by gamma-ray irradiation. Bull Fac Agric Tamagawa Univ 19:29–41

    Google Scholar 

  • Samatadze TE, Zoshchuk SA, Hazieva FM et al (2019) Phenotypic and molecular cytogenetic variability in calendula (Calendula officinalis L.) cultivars and mutant lines obtained via chemical mutagenesis. Sci Rep 9:9155. https://doi.org/10.1038/s41598-019-45738-3

    Article  CAS  PubMed Central  Google Scholar 

  • Saniya P, Kumar P, Cholin S, Patil B, Mahesh YS, Shirol AM (2023) LD50 value of diethyl sulphate (DES) induced mutagenesis in Nerium. Pharma Innov J 12(2):3490–3493. www.thepharmajournal.com

    CAS  Google Scholar 

  • Sarkar J, Singh SK, Singh KP, Guha SK (2016) In-vivo and in-vitro mutagenesis in marigold (Tagetes erecta) using 60Co gamma rays. Indian J Agric Sci 86(7):870–875

    CAS  Google Scholar 

  • Sasaki K, Aida R, Niki T, Yamaguchi H, Narumi T, Nishijima T, Hayashi Y, Ryuto H, Fukunishi N, Abe T et al (2008) High efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotechnol. 25:81–89. https://doi.org/10.5511/plantbiotechnology.25.81

    Article  CAS  Google Scholar 

  • Sawangmee W, Taychasinpitak T, Jompuk P, Kikuchi S (2011) Effects of gamma-ray irradiation in plant morphology of interspecific hybrids between Torenia fournieri and Torenia baillonii. Kasetsart J (Nat Sci) 45:803–810

    Google Scholar 

  • Schairer LA, van’t Hof J, Hayes CG, Barton RM, de Serres FJ (1978) Exploratory monitoring of air pollutants for mutagenic activity with the Tradescantia stamen hair system. Environ Health Perspect 27:51

    Article  CAS  PubMed Central  Google Scholar 

  • Scholz E (1957) Röntgenmutationen bei der Birke. Der Züchter 27(1):54–60. https://doi.org/10.1007/BF00711401

    Article  Google Scholar 

  • Schum A, Preil W (1998) Induced mutations in ornamental plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 333–366. (25) (PDF) Mutation Breeding in Ornamentals: An Efficient Breeding Method?. Available from: https://www.researchgate.net/publication/281624466_Mutation_Breeding_in_Ornamentals_An_Efficient_Breeding_Method. Accessed 10 Sep 2023

    Chapter  Google Scholar 

  • Schwemmle B, Robbelen G (1962) Haufigkeit von Blattfarbmutationen nach rontgenbestrahlung verschiedener ontogenetischen Stadien von Kalanchoe. Naturwissenschaften 49:64–65

    Article  Google Scholar 

  • Sekiguchi F, Yamakawa K, Yamaguchi H (1971) Radiation damage in shoot apical meristem of Antirrhinum majus and somatic mutations in regenerated buds. Radiat Bot 11(2):157–169

    Article  Google Scholar 

  • Selvarasu A, Handhasamy R (2013) Analysis of variability, correlation and coefficients in induced mutants of Glory lily (Gloriosa superb L.). Int J Plant Breed 7(1):69–75

    Google Scholar 

  • Selvarasu A, Kandhasamy R (2017) Molecular and agro-morphological genetic diversity assessment of Gloriosa superba mutants. Eur J Med Plants 21(1):1–13. Article no.EJMP.37036 ISSN: 2231-0894, NLM ID: 101583475

    Article  Google Scholar 

  • Seneviratne KACN, Wijesundara DSA (2004) New African violets (Saintpaulia ionantha, H. Wendl.) induced by colchicine. Curr Sci 87(2):138–140

    Google Scholar 

  • Seneviratne KACN, Wijesundara DSA (2007) First African Violets (Saintpaulia ionantha, H. Wendl.) with a changing colour pattern induced by mutation. Am J Plant Physiol 2(3):233–236

    Article  Google Scholar 

  • Sharma Rao HK (1977) Gamma ray induced mutations in Kalanchoe daigremontiana H. and P. Indian J Exot Biol 15(4):326–328

    Google Scholar 

  • Sharma Rao HK, Singh Y (1976) Gamma ray induced early bulbil formation and growth abnormalities in Kalanchoe daigremontiana H. and P. Indian J Exp Biol 14(3):358–360

    Google Scholar 

  • Sheela VL, Sheena A (2014) Novel trends and achievements in breeding of tropical ornamental crops especially orchids and anthuriums: the mutation breeding approach, chapter 6. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis; exploring genetic diversity of crops. Wageningen Academic Publishers, The Netherlands, pp 141–157

    Chapter  Google Scholar 

  • Sheela VL, Anita S, Sarada K et al (2008) In vitro mutagenesis in Dendrobium cv. Sonia. In: Abstract of FAO/IAEA international symposium on induced mutations in plants, Vienna, Austria, 12–15 Aug 2008, p 118

    Google Scholar 

  • Sherpa R, Devadas R, Bolbhat SN, Nikam T, Penna S (2022) Gamma radiation induced in-vitro mutagenesis and isolation of mutants for early flowering and phytomorphological variations in Dendrobium ‘Emma White’. Plants 11:3168. https://doi.org/10.3390/plants1122316

    Article  CAS  PubMed Central  Google Scholar 

  • Shigematsu K, Matsubara H (1972) The isolation and propagation of the mutant plant from sectorial chimera induced by irradiation of Begonia rex. J Jpn Soc Horic Sci 42(2):196–200. https://doi.org/10.2503/JJSHS.41.196

    Article  Google Scholar 

  • Shivaswamy C, Patil S, Sindha M, Solanki KS (2022) Impact of chemical mutagens on the morphological traits of China aster. Pharma Innov J 11(12):1820–1822. www.thepharmajournal.com

    CAS  Google Scholar 

  • Shraf-Eldin MA, Alam P, Elkholy SF (2018) Molecular and chemical characterization of mutant and nonmutant genotypes of saffron grown in Saudi Arabia. Food Sci Nutr 7:247. https://doi.org/10.1002/fsn3.875

    Article  CAS  Google Scholar 

  • Shukla R, Nath P, Jugran HM, Gupta MN (1986) Studies on gamma irradiation of Rudbeckia laciniata cultivar ‘Golden Glow’. J Nucl Agric Biol 15(4):207–210

    Google Scholar 

  • Silvy A (1979) Mutation breeding in carnation. In: Eucarpia meeting on carnation and Gerbera, Alasio, 1978, pp 91–102

    Google Scholar 

  • Silvy A, Mitteau Y (1986) Diversification des varieties d’oeillet (Dianthus acryophyllus) par traitement mutagene. In: International symposium on nuclear techniques and in vitro culture for plant improvement, 1985. IAEA, Vienna, pp 395–407

    Google Scholar 

  • Simard M, Michaux-Ferriere N, Silvy A (1992) Variants of carnation (Dianthus caryophyllus L.) obtained by organogenesis from irradiated petals. Plant Cell Tiss Org Cult 29:37–42. https://doi.org/10.1007/BF00036144

    Article  Google Scholar 

  • Singh B (2014) Effect of gamma rays on vegetative and flowering parameters of Gerbera (Gerbera jamesonii Bolus Ex Hooker F.). HortFlora Res Spectr 3:267–270

    Google Scholar 

  • Singh AP, Mehra KL (1971) Methods for induction and utilization of variability in the improvement of an apomictic grass, Dichantium annulatum complex. Theor Appl Genet 41(6):259–263

    Article  CAS  Google Scholar 

  • Singh JP, Arora RS, Dohare SR, Sengupta K (1970) A spontaneous mutant for flower colour and shape in a white flowering Dahlia. Euphytica 19:261–262

    Article  Google Scholar 

  • Singh KP, Choudhary ML, Kumar P, Suchitra A (2002) Characterization of in-vitro induced mutants of carnation by means of electrophoretic protein analysis. Indian J Hortic 59(4):427–430. ISSN: 0972-8538

    Google Scholar 

  • Singh VN, Banerji BK, Dwivedi AK, Verma AK (2009) Effect of gamma irradiation on African marigold (Tagetes erecta L.) Cv. Pusa Narangi Gainda. J Hortic Sci 4(1):36–40

    Article  Google Scholar 

  • Singh S, Dhyani D, Kumar A (2011) Expression of floral fasciation in gamma-ray induced G. jamesonii mutants. J Cell Plant Sci 2:7–11

    Google Scholar 

  • Siranut L, Arunee W, Peernaueh J et al (2000) Exotic canna through gamma-rays induced mutations. Ku-Sci J 18(1-3):15–23

    Google Scholar 

  • Sirisom Y (2008) Induced mutation in gloxinia (Sinningia speciosa) with ultraviolet-c (UV-C) and Ethylmethanesulfonate (EMS). Thesis, Plant Science, Sirisom, Y. 2008. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Plant Science, Prince of Songkla University

    Google Scholar 

  • Sirisom Y, Te-chato S (2008) Effect of ultraviolet-C (UV-C) on mutation of Gloxinia (Sinningia speciosa). J Agric 141–151. ISSN 0857-0841

    Google Scholar 

  • Skirvin RM, Janick J (1974) Calliclones in geranium. HortScience 9(3):270

    Google Scholar 

  • Skirvin RM, Janick J (1976a) ‘Velvet Rose’ Pelargonium, a scented geranium. HortScience 11(1):61–62

    Article  Google Scholar 

  • Skirvin RM, Janick J (1976b) Tissue culture induced variation in scented Pelargonium spp. J Am Soc Hort Sci 10(3):281–290

    Article  Google Scholar 

  • Skirvin RM, Carlson CL, Gorske S (1982) Natural and tissue culture induced variation in a Portulaca hybrid. In: Earle ED, Demarly Y (eds) Variability in plants. Regenerated from tissue culture. Prager, New York, pp 245–267

    Google Scholar 

  • Smith WA, Brand MH (2012) ‘Summer Skies’ Buddleja davidii. HortScience 47(1):126–127. https://doi.org/10.21273/HORTSCI.47.1.126

    Article  Google Scholar 

  • Smith AG, Noyszewski AK (2018) Mutagenesis breeding for seedless varieties of popular landscape plants. Acta Hortic. 1191:43–52. https://doi.org/10.17660/ActaHortic.2018.1191.7

    Article  Google Scholar 

  • Soedjono S (1988) Effect of the technique of gamma-ray irradiation on plant trait variability in Begonia semperflorens. Bull Penelitian Hortic 16:8–15. Cited in: Plant Breed Abstr.: no.8170

    Google Scholar 

  • Song HS, Kim JK, Lim YT (1999) A new variety of Hibiscus syriacus (Rose of Sharon) ‘Baekseol’ selected from a gamma ray irradiated population. Korean J Breed 31(4):50–51

    Google Scholar 

  • Song IJ, Kang HG, Kang JY et al (2009) Breeding of four-leaf white clover (Trifolium repens L.) through 60Co gamma-ray irradiation. Plant Biotechnol Rep 3:191–197. https://doi.org/10.1007/s11816-009-0091-x

    Article  Google Scholar 

  • Songsri P, Jogloy S, Holbrook CC, Puangbut D (2019) Determination of lethal dose and effect of gamma rays on growth and tuber yield of Jerusalem artichoke mutant. SABRAO J Breed Genet 51(1):1–11

    Google Scholar 

  • Soontornyatara S, Sornjai P, Puripunyavanich V, Taywiya P (2017) Effect of gamma rays on morphological character variation of Nelumbo nucifera ‘Pathum’. ISHS Acta Horticulturae, 1167: I International symposium on tropical and subtropical ornamentals. https://doi.org/10.17660/ActaHortic.2017.1167.34

  • Sparnaaij LD (1974) Progress report on clonal selection in carnations after irradiation. In: Broertjes C (ed) Meeting of the Mutation Breeding Contact Group, Wageningen, October 1974. External Rep. No. 23. Association Euratom-ITAL, Wageningen, pp 28–31

    Google Scholar 

  • Sparnaaij LD (1978) Current research on carnation with special reference to breeding. In: Eucarpia Meeting on Carnation and Gerbera, Alassio, 1978, pp 47–55

    Google Scholar 

  • Sparnaaij LD, Demmink JF (1970) Yield and quality of the glasshouse carnation (Dianthus caryophyllus L.) after mutagenic radiation with x-rays. Euphytica 19(3):310–317

    Article  Google Scholar 

  • Sparnaaij LD, Demmink JF (1971) Mutation breeding as a means of improving productivity in commercial carnation cultivars. In: Eucarpia meeting on ornamentals, Wageningen. Wageningen, Institute of Horticultural Plant Breeding, pp 38–44

    Google Scholar 

  • Sparnaaij LD, Demmink JF, Garretsen F (1974a) Clonal selection in carnation. In: Eucarpia meeting on ornamentals, Frejus. Wageningen, Institute of Horticultural Plant Breeding, pp 39–50

    Google Scholar 

  • Sparnaaij LD, Demmink JF, Garretsen F (1974b) Selection clonale chez les oeillets. In: Eucarpia meeting on ornamentals, Frejus. Wageningen, Institute of Horticultural Plant Breeding, pp 51–62

    Google Scholar 

  • Sparrow AH, Schairer IA (1980) The use of rays to induce somatic mutation in Saintpaulia. Afr Violet Mag 13:32–37

    Google Scholar 

  • Sparrow AH, Underbrink AG, Rossia HH (1972) Mutations induced in Tradescantia by small doses of X-rays and neutrons: analysis of dose-response curves. Science 176(4937):916–918. https://doi.org/10.1126/science.176.4037.916

    Article  CAS  Google Scholar 

  • Spencer JL (1955) The effect of X-irradiation on flowering of certain cultivated bulbs and corms. Am J Bot 42:917–920. https://doi.org/10.1002/J.1537-2197.1955.TB10442.X

    Article  Google Scholar 

  • Srivastava A, Mishra R (2005) Gamma ray induced small flower mutant in Hibiscus rosa-sinensis. Plant Mutat Rep Rev 1:20–21

    Google Scholar 

  • Stein OL, Sparrow AH (1963) The effects of chronic gamma irradiation on the growth of Kalanchoe cv. Brilliant Star. Radiat Bot 3:207–222

    Article  Google Scholar 

  • Stein OL, Sparrow AH (1966) The effects of acute irradiation in air, N, and CO2 on the growth of the shoot apex and internodes of Kalanchoe cv. Brilliant Star. Radiat Bot 6:187–201

    Article  Google Scholar 

  • Stewart RN (1965) The origin and transmission of a series of plastogene mutants in Dianthus and Euphorbia. Genetics 52:925–947

    Article  CAS  PubMed Central  Google Scholar 

  • Stewart RN, Arisumi T (1966) Genetic and histogenic determination of pink bract color in poinsettia. J Hered 57(6):217–220

    Article  CAS  Google Scholar 

  • Stewart RN, Semeniuk P, Dermen H (1974) Competition and accommodation between apical layers and their derivatives in the ontogeny of chimera shoots of Pelargonium x hortorum. Am J Bot 61(1):54–67

    Article  Google Scholar 

  • Streitberg H (1965) Teilabschlussbericht zur Forschungsarbeit “Zuchterische Verbesserung volkswirtschaftlich wichtiger Zierpflanzen”. Teil a. Zuchtung Azaleen unter Glas. Dtsch. Akad. Landwirtsch, Wiss., Berlin

    Google Scholar 

  • Streitberg H (1966a) Schaffung von sprossvarianten bei Azaleen durch behandlung mit rontgenstrahlen. Z Pflanzanzucht 56(1):70–87

    Google Scholar 

  • Streitberg H (1966b) Neue Rosen-und Azaleen-Sorte mit hilfe der Rontgenbestrahlung. Dtsch Gartenbau 13:267–268

    Google Scholar 

  • Streitberg H (1967a) Production of economically valuable variation in roses and azaleas by means of X-irradiation. In: Stubbe H (ed) Induced mutations and their utilization, Gartersleben, 1966. Abh. Dtsch. Akad. Wiss. Berlin KI. Medizin 2: 359–362

    Google Scholar 

  • Streitberg H (1967b) Schaffung von sprossvarianten bei Azaleen durch behandlung mit rontgenstrahlen. Arch Gartenbau 15:101–125

    Google Scholar 

  • Stubbe H, Doring H (1938a) Untersuchungen uber experimentelle Auslosung von Mutationen bei Antirrhinum majus. VII. Z Indukt Abstamm VererbLehre 70:125–129

    Google Scholar 

  • Stubbe H, Doring H (1938b) Untersuchungen uber experimentelle Auslosung von Mutationen bei Antirrhinum majus. VII. Uber den Einfluss des Nahrstoffmangels auf die Mutabilitat. Z Ind Abst Vererb 75:341–351

    Google Scholar 

  • Sugiyama M, Saito H, Ichida H, Hayashi Y, Ryuto H, Fukunishi N, Terakawa T, Abe T (2008a) Biological effects of heavy-ion beam irradiation on cyclamen. Plant Biotechnol. 25:101–104. https://doi.org/10.5511/plantbiotechnology.25.101

    Article  Google Scholar 

  • Sugiyama M, Hayashi Y, Fukunishi Y, Ryuto H, Terakawa T, Abe T (2008b) Development of flower colour mutant of Dianthus chinensis var. Semperflorens by heavy-ion beam irradiation. RIKEN Accel Prog Rep 41:229

    Google Scholar 

  • Sulistianingsih R (2013) Genetic variation of natural Orchid Phalaenopsis amabilis (L.) Blume produce gamma ray irradiation. Dissertation, Universitas Gadjah Mada, Yogyakarta

    Google Scholar 

  • Suraninpong P, Wuthisuthimethavee S (2015) Mutation induction of Anthurium andreanum using gamma radiation. In: Canhoto JM, Correia SI (eds) Proceedings of VIIIth IS on in vitro culture and horticultural breeding. Acta Hort. 1083, ISHS 2015. [Acta horticulturae, Issue 1083: 139–144. ISSN: 0567-7572]

    Google Scholar 

  • Susrama GK, Yuliadhi KA (2020) Induced mutagenesis in yellow flowering marigold with colchicine in hydrogen peroxide. Adv Trop Biodivers Environ Sci 4(2). https://doi.org/10.24843/ATBES.2020.v04.i02.p04

  • Suzuki K, Yomo Y, Abe T, Katsumoto Y, Miyazaki K, Yoshida S, Kusumi T (2002) Isolation of sterile mutants of Verbena hybrida using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:129

    Google Scholar 

  • Swarup V, Raghava SPS (1974) Induced mutation for resistance to leaf-curl virus and its inheritance in garden Zinnia. Indian J Genet Plant Breed 34(1):17–21. ISSN: 0019-5200. Online ISSN: 0975-6906

    Google Scholar 

  • Syakudo K, Yamagata H, Mori S (1964) Several useful mutants induced by X-ray irradiation of seeds in Cosmos sulphureus CAV. Jpn J Breed 14(2):82–87. https://doi.org/10.1270/jsbbs1951.14.82

    Article  Google Scholar 

  • Taek SJ, Kwangsoo C, Mihee Y et al (2005) Characteristics of mutant by colchicine treatment of wild Lilium leichtlinii seed native to Korea. Korean J Hortic Sci Technol 23(4):430–432

    Google Scholar 

  • Takahashi M, Kohama S, Shigeto J, Hase Y, Tanaka A, Morikawa H (2012) Mutants of Ficus pumila produced by ion beam irradiation with an improved ability to uptake and assimilate atmospheric nitrogen dioxide. Int J Phytoremediation 14(3):275–281. https://doi.org/10.1080/15226514.2011.604694

    Article  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  Google Scholar 

  • Tangsombatvitchit C, Wongpiyasatid A, Jompuk P et al (2008) Effects of acute gamma irradiation on mutation from Stem cuttings of Portulaca oleracea L. Agric Sci J 39(1):55–64

    Google Scholar 

  • Tarannum T, Rao M, Sahijram L, Rao M (2016) Mutagenesis in crossandra (Crossandra infundibuliformis Nees.) using 60Co gamma radiation. Environ Ecol 34(4B):2185–2192

    Google Scholar 

  • Taychasinpitak T (2009) Induced mutation of gold-dust Dracaena var. Friendmanii and var. Bangkok beauty by gamma radiation https://agris.fao.org/agris-search/search.do?recordID=TH2016003663 ISSN: 0970-0420. http://www.environmentandecology.com/

  • Te-Chato S, Susanon T (2005) Floral mutation in anthurium cv. Valentine after irraduction by ethyl methane sulphonate. Songklanakarin J Sci Technol 27:675–682

    Google Scholar 

  • Teng ES (2007) Foundations for a long term Dracaena breeding program: flower induction, irradiation, and polyploidization. Tropical plant and soil science, Dissertations and Theses. M.S.Q111.H3_4188 MAY 2007_r.pdf

    Google Scholar 

  • Teng ES, Leonhardt KW (2009a) Optimum irradiation dosage of unrooted Dracaena cuttings for mutation. Acta Hortic. 813:517–523. https://doi.org/10.17660/ActaHortic.2009.813.70

    Article  Google Scholar 

  • Teng ES, Leonhardt KW (2009b) In vitro and in vivo polyploidization of Dracaena with oryzalin. Acta Hortic. 813:509–516. https://doi.org/10.17660/ActaHortic.2009.813.69

    Article  Google Scholar 

  • Thakur PC, Bhagchandani PM (1978) Spontaneous mutant for floer colour in yellow flowering Dahlia (Dahlia variabilis). Indian J Hortic 35(1):62

    Google Scholar 

  • Thamm KJJ (1956) Ruckblick auf die bisherige wissenschaftliche Arbeid des Amsterdamer Biologen Willem Educard De Mol van Oud Loosdrecht. Bayerischer Landwirtschaftsverlag, Bonn, pp 7–30

    Google Scholar 

  • Thomas H, Stoddart JL (1975) Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of Meadow Fescue (Festuca pratensis L.). Plant Physiol 56:438–441

    Article  CAS  PubMed Central  Google Scholar 

  • Thomas H, Luthy B, Matile P (1985) Leaf senescence in a non-yellowing mutant of Festuca pratensis Huds. Plants 164:400–405

    Article  CAS  Google Scholar 

  • Tisch RE (1974) Zephyrantheae Report: induced mutations with chemicals. Plant Life. Amaryllis Year Book:124–134

    Google Scholar 

  • Tiwari AK, Kumar V (2010) Effects of colchicine on germination and survival of Phlox (Phlox drummondi). Ann Horticu 3(2):202–204

    Google Scholar 

  • Tiwari AK, Kumar V (2011) Gamma-rays induced morphological changes in pot marigold (Calendula officinalis). Prog Agric 11(1):99–102

    Google Scholar 

  • Tiwari AK, Mishra SK (2012) Effect of colchicine on mitotic polyploidization and morphological characteristics of Phlox drummondi. Afr J Biotechnol 11(39):9336–9342. https://doi.org/10.5897/AJB11.2196. ISSN 1684–5315. http://www.academicjournals.org/AJB

    Article  CAS  Google Scholar 

  • Toker C, Shyam S, Yadav IS, Solanki (2007) Mutation breeding. In: Yadav SS, Mcneil DL, Stevenson PC (eds) Lentil. Springer, New York, pp 209–224

    Chapter  Google Scholar 

  • Tolar RW, Beard JB, Grisham MP, Crocker RL (1985) Registration of TXSA 82o2 and TXSA 8218 St. Augustinegrass germplasm resistant to Panicum mosain virus St. Augustine decline strain. Crop Sci 25(2):371

    Article  Google Scholar 

  • Toler RW, Grisham MP (1983) Multi-disease resistance in St. Augustinegrass. Phytopathology 75(3):778

    Google Scholar 

  • Tomo N, Rosa S, Pintana L, Chile S (2012) Gamma irradiation on Alstroemeria aurea G. in vitro rhizomes. Rev FCA UNCUYO 44(1):191–197. ISSN impreso 0370-4661. ISSN (en línea) 1853-8665

    Google Scholar 

  • Tran Thanh Van M (1973) In vitro control of de novo flower, bud, root and callus differentiation from excised epidermal tissues. Nature (London) 246:44–45

    Article  Google Scholar 

  • Tran Thanh Van M, Drira A (1971) Definition of a simple epidermental system of directed organosis de novo: organ neoformation from epidermal tissues of Nautilocalyx lynchei. In: Les Cultues de Tissus des Plantes, Strasbourg, 1970, Colloq. Int. C.N.R.S., pp 169–176

    Google Scholar 

  • Tsuji S, Miyamoto M, Okabe T, Hase Y, Yokota Y, Narumi I (2007) Mutation breeding on the ornamental plants of Gypsophila and Gentiana species. JAEA-review 2007-060 3-18, p 84

    Google Scholar 

  • Tsuro M, Iwata C, Kataoka R, Yoshihara R, Hase Y (2008) Comparative effect of 12C6+ Beam and gamma-ray irradiation on callus growth and shoot formation from Lavandin isolated cells. JAEA-review, 2008-055, p 72

    Google Scholar 

  • Tulman Neto A, Latado RR (1996) Mutation breeding in Stromantha sanguined by gamma radiation. Braz J Gen 19:197

    Google Scholar 

  • Underbrink G, Schaires LA, Sparrow AH (1973) Tradescantia Stamen Hairs: A radiobiological test system applicable to chemical mutagenesis. In: Chemical mutagenesis: principles and methods for their detections, vol 3, no 4. Plenum Press, New York, p 159

    Google Scholar 

  • Urrea AI, Ceballos SM (2005) Empleo de las radiaciones gamma en la inducción de variabilidad genética en Heliconia psittacorum. Actual Biol 27(82):17–23

    Article  CAS  Google Scholar 

  • Urrea AI, Ceballos SM (2017) Use of gamma radiation in the induction of genetic variability in Heliconia psittacorum. Biol Updates 27(82):17–23. https://revistas.udea.edu.co/index.php/actbio/article/view/329425

    Google Scholar 

  • Uyama Y, Ohya H, Amano Y, Kashimoto K, Hatano S, Nozawa S, Yoshihara R, Hase Y, Narumi I (2011) Production of mutants by ion beam irradiation in Dahlia spp. JAEA Takasaki annual report 2011, p 102

    Google Scholar 

  • Uyama Y, Ohya H, Amano Y, Kashimoto K, Hatano S, Nozawa S, Yoshihara R, Hase Y, Narumi I (2013) Production of mutants by ion beam irradiation in Dahlia spp. JAEA Takasaki annual report 2011, p 102

    Google Scholar 

  • Vaarama A (1970) Induced mutations and polyploidy in Birch, Betula spp. Final report (part V)-P.L.480; 9-30-1970. Project no. E8-FS-47, Grant no. FG-Fi-133. Report no. 10, covering the research period: Jan. 1st, 1962-Dec. 31st, 1966, with additional results of later date, 100p

    Google Scholar 

  • Van Dordrecht EM (1984) Mutatieveredeling bij Kalanchoe veelbeloved. Vakkbl Bloemiemisterij 39(25):50–51

    Google Scholar 

  • Van Eijk JP, Eikelboom W (1981a) Selecti bij veredeling van tulpen. Hobaho 54(50):6–8

    Google Scholar 

  • Van Eijk JP, Eikelboom W (1981b) Selecti bij veredeling van de tulp. (II). Bloembollencultuur 91(39):1054–1055

    Google Scholar 

  • Van Groenestijn JE, Van Tuyl J (1983) Straks geen leliebelichting meer nodig. Hoopvolle resultaten van veredeling op lichtbehoefte. Vakbl Bioemisterij 38(6):30–31

    Google Scholar 

  • Van Houwelingen A, Souer E, Spelt K, Kloos D, Mol J, Koes R (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J 13:39–50. https://doi.org/10.1046/j.1365-313x.1998.00005.x

    Article  Google Scholar 

  • Van Raalte D (1980) Nieuwe Hoya carnosa-rassen. Vakbl Bloemisterij 35(5):115. https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx (Mutant Variety Database Search & Cited Source Material - STEMMA, Hoya Journal, ISSN 2832 417-X, July 2022, V4, N1, Page 37: ‘Compacta’ variations and seed irradiation)

    Google Scholar 

  • Van Raatle D, Van Raatle-Wichers D (1974) Toekomst voor Streptocarpus. Vakbl Bloemisterij 29(23):15

    Google Scholar 

  • Van’t Hof J, Schairer A (1982) Tradescantia assay system for gaseous mutagens: A report of the U.S. environmental protection agency Gene-Tox program. Mut Res 99(3):303–315. https://doi.org/10.1016/0165-1110(82)90048-3

    Article  Google Scholar 

  • Vaughn KC, Wilson KG (1980) A dominant plastome mutation in Hosta. J Hered 71(3):203–206

    Article  Google Scholar 

  • Vaughn KC, Wilson KG, Reibach PH (1980) Ultrastructure and biochemistry of two mutants in Hosta (Liliaceae). Cytobios 27(106):71–80. PMID: 7418450

    CAS  Google Scholar 

  • Venkatachalam P, Jayabalan N (1991) Induction of mutants in Zinnia elegans Jacq. Mutant Breed Newsl 38:10

    Google Scholar 

  • Venkatachalam P, Jayabalan N (1992) Analysis of leaf proteins in gamma rays induced mutants of Zinnia. Crop Improv 19:97–99

    Google Scholar 

  • Venkatachalam P, Jayabalan N (1997) Effect of gamma rays on some qualitative and quantitative characters in Zinnia elegans Jacq. Indian J Genet Plant Breed 57:255–261

    Google Scholar 

  • Venkatchalam P, Jayabalan N (1994a) New flower colour mutants evolved through gamma irradiation in Zinnia elegans Jacq. J Mendel 11:35

    Google Scholar 

  • Venkatchalam P, Jayabalan N (1994b) Effect of gamma irradiation on flower structure of Zinnia elegans Jacq. J Swamy Bot Cl 11:58

    Google Scholar 

  • Venkateswarlu M, Kumar P, Mogil T, Kashinath, Ramesh Babu CH (1983) Sterile mutant induced through hydroxylamine in Catharanthus roseus (L.) G. Don. by gamma rays and EMS individually and in combination. Bot Rep 2:82

    Google Scholar 

  • Venkateswarlu M, Susheelamma BN, Kumar P, Subha K (1988) Studies on induced mutation frequency in Catharanthus roseus (L.) G. Don. by gamma rays and EMS individually and in combination. Indian J Genet 48:313–316

    Google Scholar 

  • Venverloo CJ (1974) Exogenous regulation of the formation of roots or shoots in the same culture. In: Street HE (ed) Third international conference of Associations of Plant Tissue and Cell Culture, Leicester. University of Leicester, Leicester, Abstr. No. 31

    Google Scholar 

  • Venverloo CJ, Koster J, Libbenga KR (1983) The formation of adventitious organs. IV. The ontogeny of shoots and leaves from epidermal cells of Nautilocalyx lynchii. Z Pflanzenphisiol 109(1):55–67

    Article  Google Scholar 

  • Verma RC, Raina SN (1980) Phlox drummondii in the study of radiation induced chromosomal aberrations. Nucleus 23:176–184

    Google Scholar 

  • Verma RC, Sharma R (2000) Radiation induced cytological change in Phlox drummondii. J Cytol Genet 1:33–39

    Article  Google Scholar 

  • Verma AK, Singh RR (2010) Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity. Indian J Pharm Sci 72(5):655–657. https://doi.org/10.4103/0250-474X.78541. PMCID: PMC3116317. PMID: 21695004

    Article  CAS  PubMed Central  Google Scholar 

  • Verma M, Dwivedi AK, Banerji BK (2010) Effecte of gamma irradiation on African marigold cv. Pusa Basanti Gaida. Abst: National symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology and biodiversity, March 19-21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Abstract No. 2.36: 29

    Google Scholar 

  • Verma AK, Singh RR, Singh S (2013) Mutation breeding in Catharanthus roseus (L.) G. Don: an overview. J Pharmacogn Phytochem 2(1):334–337

    Google Scholar 

  • Vichai P, Woranuch L, Kanokporn B (2011) Radiation-induced mutant of American yellow lotus and its interspecific crosses with Thai Lotus. Water Garden J 1st Quarter 26(1):5–12, 8p

    Google Scholar 

  • Vilperte V, Boehm R, Debener T (2011) A highly mutable GST is essential for bract colouration in Euphorbia pulcherrima Willd. Ex Klotsch. BMC Genomics 22:208. https://doi.org/10.1186/s12864-021-07527-z

    Article  CAS  Google Scholar 

  • Vinodh S, Kannan M (2020a) Effects of ethyl methane sulphonate on the yield and qualtiy of crossandra (Crossandra infundibuliformis (L.) Nees.). Int J Chem Stud 8(1):539–541. P-ISSN: 2349–8528 E-ISSN: 2321–4902. https://doi.org/10.22271/chemi.2020.v8.i1h.8315

    Article  CAS  Google Scholar 

  • Vinodh S, Kannan M (2020b) Effect of gamma irradiation on growth and yield of Crossandra (Crossandra infundibuliformis (L.) Nees.). J Pharmacogn Phytochem 9(1):541–542. E-ISSN: 2278-4136 P-ISSN: 2349-8234

    CAS  Google Scholar 

  • Visessuwan R (1985) In vitro mutation breeding of gerbera (Gerbera jamesonii Hort.). Thesis, Kasetsart Universty, Bangkok. https://agris.fao.org/agris-search/search.do?recordID=TH8620567

  • Walther KF (1981) Mutants tolerant to low-temperature conditions induced in suspension culture as a source for improvement of E. pulcherrima Will. Ex. IAEA-SM-251/12. Proceedings of an international symposium on induced mutations as a tool for crop plant improvement jointly organized by the International Atomic Energy Agency and The Food and Agriculture Organization of the United Nations and held in Vienna, 9–13 March 1981

    Google Scholar 

  • Walther F, Sauer A (1986a) Analysis of radiosensitivity – a basic requirement for in vitro somatic mutagenesis. II. Gerbera jamesponii. In: Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna, Aug 1985, STI/PUB/698, pp 155–159

    Google Scholar 

  • Walther F, Sauer A (1986b) In vitro mutagenesis in Gerbera jamesonii. In: Horn W, Jenson CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. Proceedings of symposium on Eucarpia, Berlin, 1985. Walter de Gruyter, Berlin, pp 555–562

    Google Scholar 

  • Walther F, Sauer A (1989a) Increase of genetic variation in ‘Blue Daisy’ (Brachycome multifida) by in vitro-mutagenesis and polyploidization. Mutat Breed Newsl 33:3–4. (Excerpts from a presentation during the XVIth Int. Congress of Genetics, Toronto, Canada, 20-27 August 1988, Source - Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria); 36p; ISSN 1011-260X; Jan 1989; pp 3–4; 16. International Congress of Genetics; Toronto (Canada); 20–27 Aug 1988)

    Google Scholar 

  • Walther F, Sauer A (1989b) Effect of different intervals of X-ray split doses on shoot production of in vitro derived explants of Gerbera jamesonii Bolus. Vortrage Pflanz, 15. Source - Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria); 44p; ISSN 1011-260X; Jan 1990; p 9; 12. EUCARPIA congress on science for plant breeding; Goettingen (Germany); 27 Feb–3 March 1989

    Google Scholar 

  • Walther F, Sauer A (1990) Influence of acute and fractioned X-ray doses on shoot production of in vitro derived explants of Gerbera jamesonii H. Bolus. Plant Breed 105:137–143. https://doi.org/10.1111/j.1439-0523.1990.tb00466.x

    Article  Google Scholar 

  • Walther F, Sauer A (1991) Split dose irradiation of in vitro derived microshoots. An effective procedure for increasing mutability. In: Plant mutation breed for crop improvement. IAEA, Vienna, pp 343–353

    Google Scholar 

  • Walther F, Sauer A (1992) Interaction between in vitro shoot forming capacity and X-ray sensitivity of Gerbera jamsonii H. Bolux ex Hook P. Gartenbauwissenschaft 57:68–71

    Google Scholar 

  • Wang YF, ** YL, Wie ZC et al (1989) The effect of gamma rays and colchicine on mutagenesis in somaclones of Lilium davidii var. Willmottiae. Jiangsu J Agric Sci 5:31–37. Cited in: Plant Breed Abstr., 1990: no. 5930

    Google Scholar 

  • Wang MG, Zeng RZ, **e L, Gao XH, Zhang ZS (2011) In vitro polyploid induction and its identification in Cymbidium sinense. Chin Agric Sci Bull 27:132–136. (in Chinese)

    Google Scholar 

  • Wang P, Zhang Y, Zhao L, Mo B, Luo T (2017) Effect of gamma rays on Sophora davidii and detection of DNA polymorphism through ISSR marker. Biomed Res Int. https://doi.org/10.1155/2017/8576404

  • Wanna**dapom A, Kativat C, Tantasawat PA (2016) Mutation induction of Dendrobium ‘Earsakul’ using sodium azide. HortScience 51(11):8p. http://repository.unib.ac.id/id/eprint/12851

    Google Scholar 

  • Warburton J, Gront BWW, Short KC (1984) In vitro selection for cold tolerant cell lines of Saintpaulia ionantha (WendL). In: Novak FJ, Havel L, Dolezel J (eds) Proceedings plant tissue and cell culture applications to crop improvement. CSAV, Prague, pp 355–356

    Google Scholar 

  • Warfield D (1973) Induction of mutations in African Violet (Saintpaulia ionantha Wendl.) by ethyl methane sulfonate. Hortic Sci 8:29

    CAS  Google Scholar 

  • Warner RM, Erwin JE (1998) Effect of irradiance on Hibiscus L. species flowering. In: 95th annual international conference of the American Society for Horticultural Science Charlotte, North Carolina, USA, 12–15 July 1998, Abstract 015, p 416

    Google Scholar 

  • Weigle JL, Butler JK (1983) Induced dwarf mutant in Impatiens platypetala. J Hered 74:200. https://doi.org/10.1093/oxfordjournals.jhered.a109764

    Article  Google Scholar 

  • Wellensiek SJ (1960) Mutagenic genes. Proc Kon Ned Akad Wetensch C 63(1):38–42

    Google Scholar 

  • Wellensiek SJ, van Bren G (1973) A non-specific mutagenic gene in cyclamen. Neth J Agric Sci 21:99–101

    Google Scholar 

  • Widiarsih S, Dwimahyani I (2023) Induced mutation on Indonesian black orchid (Coelogyne pandurata Lindley) in-vitro culture by gamma irradiation. IOP Conf Ser Earth Environ Sci 1160:012001. https://doi.org/10.1088/1755-1315/1160/1/012001

    Article  Google Scholar 

  • Wongpiyasatid A, Hormchan P (2000) New mutants of perennial Portulaca grandiflora through gamma radiation. Agric Nat Resour 34:408–416

    Google Scholar 

  • Wongpiyasatid A, Roongtanakiat N (1992) Effects of gamma radiation on flower colors and types of perennial Portulaca grandiflora Hook. In: The 30th Kasetsart University conference proceedings, Bangkok, Thailand, pp 695–704 (In Thai with English abstract)

    Google Scholar 

  • Wongpiyasatid A, Thinnok T, Taychasinpitak T, Jompuk P, Chusreeaeom K, Lamseejan S (2007) Effects of acute gamma irradiation on adventitious plantlet regeneration and mutation from leaf cuttings of African violet (Saintpaulia ionantha). Agric Nat Resour 41:633–640

    Google Scholar 

  • Wosinska A (1980a) Effect of various doses of gamma 60Co radiation upon some morphological features of China aster (Callistephus chinensis Nees) in M1 and M2 generations. Acta Agrobot 33(1):5–29

    Article  Google Scholar 

  • Wosinska A (1980b) Effect of various doses of gamma 60Co radiation upon pollen vitality of China aster (Callistephus chinensis Nees) in M1 and M2 generations. Acta Agrobot 33(1):31–39

    Article  Google Scholar 

  • Wosinska A (1982) V. Induction of variability and mutation in China aster (Callistephus chinensis Nees) with 60Co gamma rays. Acta Agrobot 35(2):285–301. Accession: 001505627

    Article  Google Scholar 

  • Wosinska A (1986) A radiomutant with bi-coloured ligulate flowers acquired from the China aster (Calistephus chinensis Nees) cultivar Dukat. Acta Agrobot 37:117–121. Cited in: Hort. Abstr. 1987: no.1255

    Article  Google Scholar 

  • Wosinska A (2013) Induction with 60Co gamma rays of modification variability and mutation of China aster (Callistephus chinensis Nees). Acta Agrobot 35(2):285–301. https://doi.org/10.5586/aa.1982.029

    Article  Google Scholar 

  • Wu J-Z, Zheng Y-B, Chen T-Q, Yi J, Qin L-P, Rahman K, Lin W-X (2007) Evaluation of the quality of lotus seed of Nelumbo nucifera Gaertn from outer space mutation. Food Chem 105(2):540–547. https://doi.org/10.1016/j.foodchem.2007.04.011

    Article  CAS  Google Scholar 

  • Wu DL, Hou SW, Qian PP et al (2009) Flower color chimera and abnormal leaf mutants induced by 12C6+ heavy ions in Salvia splendens Ker-Gawl. Sci Hortic 121:462–467

    Article  CAS  Google Scholar 

  • **a X (2020) Effects of 60Co-γand electron beam irradiation on the germination and seedling growth of Lagerstroemia indica. J Trop Biol 11(2):210–216. https://doi.org/10.15886/j.cnki.rdswxb.2020.02.011

    Article  Google Scholar 

  • **cun D, Shuang M, Wenjian L, Lixia Y, Libin Z, Hongmei X (2007) Preliminary study on flower color mutant induced by 80 MeV/u 12C+6 ions in Dahlia pinnata Cav using RAPD technique. J Radiat Res Radiat Process 25(1):62–64. ISSN 1000-3436

    Google Scholar 

  • Yakovleva EV, Beznosikov VA, Kondratenok BM et al (2011) Genotoxic effects in Tradescantia plant (clone 2) induced by benzo(a)pyrene. Contemp Probl Ecol 4:594–599. https://doi.org/10.1134/S1995425511060051

    Article  Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68:71–78

    Article  CAS  PubMed Central  Google Scholar 

  • Yamaguchi E, Miyatani M, Kawai T, Atsumi H, Hase Y (2017) Re-development of new variety of Salvia by ion beam breeding. QST Takasaki annual report 2015, p 132

    Google Scholar 

  • Yang Y, Chen X, Xu B, Li Y, Ma Y, Wang G (2015) Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Front Plant Sci 6:139. https://doi.org/10.3389/fpls.2015.00139

    Article  PubMed Central  Google Scholar 

  • Yena AV (2022) New cultivar Hedera helix ‘Peregreenus’ and some features of bud mutations develo** in ivy. Plant Biol Hortic Theory Innov 2(163):36–44. https://doi.org/10.36305/2712-7788-2022-2-163-36-44

    Article  Google Scholar 

  • Yim JH, Woo SM, Hwang ML, Pyo SH, Kwon HL, Woo JS (2010) Mutant breeding of ornamental trees for creating variations with high value using proton beam. KAERI, 56p

    Google Scholar 

  • Yin CC, Zhang Y, Zhang JH, Chen YY, Wang GD (2010) Identification of hybrid tetraploid and ploidy induced by colchicine. J Nucl Sci 24:518–521. (in Chinese)

    Google Scholar 

  • Yu L, Li W, Du Y, Chen G, Luo S, Liu R, Feng H, Zhou L (2016) Flower color mutants induced by carbon ion beam irradiation of geranium (Pelargonium hortorum, Bailey). Nucl Sci Tech 27:112. https://doi.org/10.1007/s41365-016-0117-3

    Article  CAS  Google Scholar 

  • Yuki S, Araki S, Suzuki T, Ohsuga T, Katayama K, Hase Y, Yokota Y (2007) Breeding new varieties of miniature Cymbidium using ion beam irradiation. JAEA-review 2007-060 3-19, p 85

    Google Scholar 

  • Yunus MF, Azizi MA, Kadir MA, Daud SK, Rashid AA (2013) In vitro mutagenesis of Etlingera elatior (Jack) and early detection of mutation using RAPD markers. Turk J Biol 37:716–725. https://doi.org/10.3906/biy-1303-19

    Article  CAS  Google Scholar 

  • Zahra N, Narges AM, Farah F (2020) Effect of gamma radiation on morphological and genetic variation in regenerated plantlets Catharanthus roseus L. (G) Don. Genetika 52(1):15–28. https://doi.org/10.2298/GENSR2001015N

    Article  Google Scholar 

  • Zandbergen M (1964) Why should daffodils not have to split cup? In: Daffodil tulip year book, vol 29, pp 82–87

    Google Scholar 

  • Zeven AC (1972) Inheritance of functional male sterility in Streptocarpus ‘Constant Nymph’ and its mutants. Euphytica 21:265–270

    Article  Google Scholar 

  • Zeven AC (1973) Streptocarpus ‘Constant Nymph’. De oorzaak van de populariteit in Nederland. Vakbl Bloemisterij 28(35):14–15

    Google Scholar 

  • Zhang QH, Li ZL, Tang M, Xu CC, ** HP (2011) Study on the use of colchicine to induce polyploidy of Dendrobium candidum Wall ex Lindl. J Yunnan Agric Univ 26:678–682. (in Chinese)

    Google Scholar 

  • Zhang ZY, Wang P, Li Y, Ma LL, Li LF, Yang RT, Ma YZ, Wang SA, Wang Q (2014) Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA Cell Biol 33:680–688

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou D, Shen S, Wang Y (1990) Induction of mutation with gamma irradiation in Camellia (Camellia japonica L.). Acta Agriculturae Nucleatae Sinica, 1990-01

    Google Scholar 

  • Zhou LB, Li WJ, Ma S, Dong XC, Yu LX, Li Q, Zhou GM, Gao QX (2006a) Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Nucl Instrum Methods Phys Res B 244:349–353. https://doi.org/10.1016/j.nimb.2005.10.034

    Article  CAS  Google Scholar 

  • Zhou LB, Li WJ, Yu LX et al (2006b) Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int J Radiat Biol 82:473–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, S.K. (2023). Mutation Work on Other Ornamental Plants. In: Role of Mutation Breeding In Floriculture Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-5675-3_12

Download citation

Publish with us

Policies and ethics

Navigation