Thermo-Optical Properties of Metal Oxide Nanoparticles and Their Applications

  • Chapter
  • First Online:
Optical Properties of Metal Oxide Nanostructures

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 26))

  • 418 Accesses

Abstract

This part presents a comprehensive analysis of previous and recent research and advances related to the thermo-optical properties of metal oxide nanoparticles. Modern nanotechnologies produce various nanoparticles from different oxides with unique properties. Metal oxide nanoparticles have significant advantages over other nanoparticles due to their special optical properties and high oxide melting and evaporation temperatures, which allows them to be stable in a high-temperature surrounding. The thermo-optical properties of oxide nanoparticles have recently received significant attention due to their various applications in solar energy conversion, laser processing, photocatalytic applications, photothermal therapies. The development of modern high-temperature photonics, photocatalysis, and laser technologies in recent years requires the study and use of the optical parameters of metal oxide nanoparticles. The analysis of thermo-optical properties of oxide Al2O3, TiO2, NiO, ZnO and other conventional oxide nanoparticles and their dependences on temperature has been carried out. These results can be used for the development and application of various optical and laser devices and technologies based on the use of thermo-optical properties of metal oxide nanoparticles, as well as for high-temperature nanophotonics and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 6 (2019)

    Article  Google Scholar 

  2. O. Diwald, T. Berger (eds.), Metal Oxide Nanoparticles: formation, Functional Properties, and Interfaces (Wiley, New Jersey, 2021)

    Google Scholar 

  3. M.P. Nikolova, M.S. Chavali, Metal oxide nanoparticles as biomedical materials. Biomimetics 5, 27 (2020)

    Article  Google Scholar 

  4. T. Naseem, T. Durrani, The role of some important metal oxide nanoparticles for wastewater and antibacterial applications. Environ. Chem. Ecotoxicol. 3, 59 (2021)

    Article  Google Scholar 

  5. I. Bretos, R. Jimenez, J. Ricote, M.L. Calzada, Low temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem. Soc. Rev. 47, 291 (2018)

    Article  Google Scholar 

  6. S. Diodati, P. Dolcet, M. Casarin, S. Gross, Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem. Rev. 115, 11449 (2015)

    Article  Google Scholar 

  7. H. Li, Y.-J. Zhu, Liquid-phase synthesis of iron oxide nanostructured materials and their applications. Chem. Eur. J. 26, 9180 (2020)

    Article  Google Scholar 

  8. G. Schulz, S. Li (eds), Virtual special issue of recent advances in gas-phase synthesis of functional materials for energy. Energy Fuels 35(7) (2021)

    Google Scholar 

  9. H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang, V. Annapureddy, J.W. Kim, J.J. Choi, B.D. Hahn, S. Priya, K.J.L.J. Ryu, Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, 1705148 (2018)

    Article  Google Scholar 

  10. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. A Euro. J. 26, 9206 (2020)

    Article  Google Scholar 

  11. S. Singh, H. Zeng, C. Guo, W. Cai (eds.), Nanomaterials. Processing and Characterization with Lasers (Wiley-ECH Verlag GmbH, Berlin, 2014)

    Google Scholar 

  12. M.R. Kalus, V. Reimer, S. Barcikowski, B. Gokce, Discrimination of effects leading to gas formation during pulsed laser ablation in liquids. Appl. Surf. Sci. 465, 1096 (2019)

    Article  Google Scholar 

  13. V.K. Pustovalov, A.S. Smetannikov, V.P. Zharov, Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Las. Phys. Lett. 5, 775 (2008)

    Article  Google Scholar 

  14. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience publication, New York, 1983)

    Google Scholar 

  15. V.K. Pustovalov, V.A. Babenko, Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Las. Phys. Lett. 1, 516 (2004)

    Article  Google Scholar 

  16. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-VCH Verlag GmbH & Co, New York, 2011)

    Book  Google Scholar 

  17. A. Trugler, Optical Properties of Metallic Nanoparticles (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  18. L. Astafyeva, V. Pustovalov, W. Fritzsche, Characterization of plasmonic and thermo-optical parameters of spherical metallic nanoparticles. Nano-Struct. Nano-Obj. 12, 57 (2017)

    Article  Google Scholar 

  19. T.B. Gorji, A.A. Ranjbar, A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew. Sustain. Ener. Rev. 72, 10 (2017)

    Google Scholar 

  20. V.K. Pustovalov, Modeling and analysis of optical properties of nanoparticles and nanofluids for effective absorption of solar radiation and their heating. Springer Nat. Appl. Sci. 1, 356 (2019)

    Google Scholar 

  21. V. Pustovalov, Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Las. Phys. 21, 906 (2011)

    Article  Google Scholar 

  22. V.K. Pustovalov, Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem. Phys. 308, 103 (2005)

    Article  Google Scholar 

  23. A. Plech, V. Kotaidis, Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys. Rev. 70, 195423 (2004)

    Article  Google Scholar 

  24. V.K. Pustovalov, Light-to-heat conversion and heating of single NPs, their assemblies, and surrounding medium under laser pulses. RSC Adv. 6, 81266 (2016)

    Article  Google Scholar 

  25. L.I. Trakhtenberg, V.A. Astapenko, S.V. Sakhno, M.A. Kozhushner, V.S. Posvyanskii, O.J. Ilegbusi, Absorption of infrared radiation by an electronic subsystem of semiconductor nanoparticles. J. Phys. Chem. C 120, 23851 (2016)

    Article  Google Scholar 

  26. S. Bruzzone, M. Malvaldi, Local field effects on laser-induced heating of metal nanoparticles. J. Phys. Chem. 113, 15805 (2009)

    Google Scholar 

  27. A.M. Schrand, B.M. Stacy, S Payne, L. Dosser, S.M. Hussain. Fundamental examination of nanoparticle heating kinetics upon near infrared irradiation. ACS Appl. Mater. Inter. 3, 3971 (2011)

    Google Scholar 

  28. A.M. Fales, W.C. Vogt K.A. Wear, T.J. Pfefer, I.K. Ilev, Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses. J. Biomed. Opt. 24, 065003 (2019)

    Google Scholar 

  29. S. Wang, L. Fu, Y. Zhang, J. Wang, Z. Zhang Quantitative evaluation and optimization of photothermal bubble generation around overheated nanoparticles excited by pulsed lasers. J. Phys. Chem. C 122, 24421 (2018)

    Google Scholar 

  30. V.K. Pustovalov, Model for estimations of laser threshold fluencies for photothermal bubble generation around nanoparticles. Appl. Phys. A 126, 196 (2020)

    Article  Google Scholar 

  31. S. Ishii, R.P. Sugavaneshwar, K. Chen, T.D. Dao, T. Nagao, Solar water heating and vaporization with silicon NPs at Mie resonances. Opt. Mater. Exp. 6, 640 (2016)

    Article  Google Scholar 

  32. M. Amjad, G. Raza, Y. **n, S. Pervaiz, J. Xu, X. Du, D. Wen, Volumetric solar heating and steam generation via gold nanofluids. Appl. Energy 206, 393 (2017)

    Article  Google Scholar 

  33. S.R.J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapor: a review. Progr. Mater. Sci. 53, 775 (2008)

    Article  Google Scholar 

  34. K.J. Laidler, Chemical Kinetics (Harper and Row, New York, 1987)

    Google Scholar 

  35. B. He, G. Xu, M. Zhou, Q. Yuan, Effect of oxidation temperature on the oxidation process of silicon-containing steel. Metals 6, 137 (2016)

    Article  Google Scholar 

  36. E. Chicardi, J.M. Córdoba, F.J. Gotor, Kinetics of high-temperature oxidation of (Ti, Ta) (C, N)-based cermets. Corr. Sci. 102, 168 (2016)

    Article  Google Scholar 

  37. A. Yabuki, S. Tanaka, Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 46, 2323 (2011)

    Article  Google Scholar 

  38. V.K. Pustovalov, D.S. Bobuchenko, Heating, evaporation and combustion of a solid aerosol particle in a gas exposed to optical radiation. Int. J. Heat Mass Trans. 32, 3 (1989)

    Article  Google Scholar 

  39. M.A. Gondal, T.F. Qahtan, M.A. Dastageer, T.A. Saleh, Y.W. Maganda, D.H. Anjum, Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance. Appl. Surf. Sci. 286, 149 (2013)

    Article  Google Scholar 

  40. V.K. Pustovalov, L.G. Astafyeva, Influence of shell parameters on optical properties of spherical metallic core-oxide shell nanoparticles. J. Nanomater. 2015, 812617 (2015)

    Article  Google Scholar 

  41. A. Fales, W. Vogt, J. Pfefer, I. Ilev Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles. Sci. Rep. 7, 15704 (2017)

    Google Scholar 

  42. S. Inasawa, M. Sugiyama, S. Noda, Y. Yamaguchi, Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer. J. Phys. Chem. B 110, 3114 (2006)

    Article  Google Scholar 

  43. T. Tsuji, S. Sakaki, H. Fujiwara, H. Kikuchi, M. Tsuji, Y. Ishikawa, N. Koshizaki, Stabilizer-concentration effects on the size of gold submicrometer-sized spherical NPs prepared using laser-induced agglomeration and melting of colloidal nanoparticles. J. Phys. Chem. C 122, 21659 (2018)

    Article  Google Scholar 

  44. M. Sugiyama, H. Okazaki, S. Koda, Size and shape transformation of TiO2 nanoparticles by irradiation of 308-nm laser beam. Jpn. J. Appl. Phys. 41(1), 4666 (2002)

    Article  Google Scholar 

  45. M.S.F. Lima, F.P. Ladario, R. Riva, Microstructural analyses of the nanoparticles obtained after laser irradiation of Ti and W in ethanol. Appl. Surf. Sci. 252, 4420 (2006)

    Article  Google Scholar 

  46. Y. Ishikawa, N. Koshizaki, A. Pyatenko, N. Saitoh, N. Yoshizawa, Y. Shimizu, Nano- and submicrometer-sized spherical particle fabrication using a submicroscopic droplet formed using selective laser heating. J. Phys. Chem. C 120, 2439 (2016)

    Article  Google Scholar 

  47. V.K. Pustovalov, Investigation of threshold laser intensities for melting and evaporation of spherical and spheroidal nanoparticles in media by short laser pulses. Chem. Phys. Lett. 421, 142 (2006)

    Article  Google Scholar 

  48. V.K. Pustovalov, A.N. Chumakov, Laser melting and evaporation of nanoparticles: a simplified model for estimation of threshold fluence. Opt. Las. Techn. 126, 106082 (2020)

    Article  Google Scholar 

  49. A. Takami, H. Kurita, S. Koda, Laser-induced size reduction of noble metal nanoparticles. J. Phys. Chem. B 103, 1226 (1999)

    Article  Google Scholar 

  50. H. Muto, K. Miyajima, F. Mafune, Mechanism of laser-induced size reduction of gold NPs as studied by single and double laser pulse excitation. J. Phys. Chem. B 112, 5810 (2008)

    Google Scholar 

  51. R. Cavicchi, D. Meier, C. Presser, V. Prabhu, S. Guha, Single laser pulse effects on suspended Au- nanoparticle size distributions and morphology. J. Phys. Chem. C 117, 10866 (2013)

    Article  Google Scholar 

  52. M.J. Rivera-Chaverra, E. Restrepo-Parra, C.D. Acosta-Medina, A. Mello, R. Ospina, Synthesis of oxide iron nanoparticles using laser ablation for possible hyperthermia applications. Nanomaterials 10, 2099 (2020)

    Article  Google Scholar 

  53. F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, Experimental and theoretical analysis of photofragmentation of Au NPs by picosecond laser radiation. J. Phys. Chem. C 114, 3354 (2010)

    Article  Google Scholar 

  54. A.R. Ziefuss, S. Reich, S. Reichenberger, M. Levantino, A. Plech, In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres. Phys. Chem. Chem. Phys. 22, 4993 (2020)

    Article  Google Scholar 

  55. V.K. Pustovalov, Influence of temperature dependence of optical properties of gold nanoparticles and their heating, melting and evaporation by laser pulses. High Temper. Mater. Process. 26, 41 (2022)

    Article  Google Scholar 

  56. Refractive index database. http://refractiveindex.info/

  57. V.M. Zolotarev, V.N. Morozov, E.V. Smirnova. Optical Constants of Nature and Technical Media (Chemistry publ., Leningrad, 1984, in Russian)

    Google Scholar 

  58. I.H. Malitson, Inter specimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205 (1965)

    Article  Google Scholar 

  59. R. Kitamura, L. Pilon, M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118 (2007)

    Article  Google Scholar 

  60. J.R. Devore, Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416 (1951)

    Article  Google Scholar 

  61. S. Mahmoud, S. Alshomer, M. Tarawnh, Structural and optical characterization of spayed nickel oxide thin films. J. Modern Phys. 2, 1178 (2011)

    Article  Google Scholar 

  62. Z. Said, R. Saidur, N. Rahim, Optical properties of metal oxides based nanofluids. Int. Commun. Heat Mass Transf. 59, 46–54 (2014)

    Article  Google Scholar 

  63. N.C. Horti, M.D. Kamatagi, N.R. Patil, M.S. Sannaikar, S.R. Inamdar, Synthesis and optical properties of copper oxide nanoparticles: effect of solvents. J. Nanophoton. 14, 046010 (2020)

    Article  Google Scholar 

  64. A. Chauhan, R. Verma, K.M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E.H. Raslan, A. Imran, Structural and optical properties of copper oxide nanoparticles: a study of variation in structure and antibiotic activity. J. Mater. Res. 36, 1496 (2021)

    Article  Google Scholar 

  65. M. Karami, M. Akhavan-Behabadi, M.R. Dehkordi, S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol. En. Mater. Sol. Cells 144, 136 (2016)

    Article  Google Scholar 

  66. S.S. Kulkarni, M.D. Shirsat, Optical and structural properties of zinc oxide nanoparticles. Int. J. Adv. Res. Phys. Sci. 2, 14 (2015)

    Google Scholar 

  67. W. Widiyastuti, S. Machmudah, T. Nurtono, S. Winardi, R. Balgis, T. Ogi, K. Okuyama, Morphology and optical properties of zinc oxide nanoparticles synthesized by solvothermal method. Chem. Engin. Trans. 56, 955 (2017)

    Google Scholar 

  68. R.V. Quevedo-Robles, A.R. Vilchis-Nestor, P.A. Luque, Study of optical and morphological properties of nanoparticles semiconductors of zinc oxide synthesized using Mimosa tenuiflora extract for photodegradation of methyl orange. Opt. Mater. 128, 112450 (2022)

    Article  Google Scholar 

  69. J. Jassi, V. Biju, A. Shajan, Structural and optical properties of zinc oxide nanoparticles. AIP Conf. Proc. 2263, 8244066 (2020)

    Google Scholar 

  70. S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, Influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol. 10, 023002 (2021)

    Article  Google Scholar 

  71. Q. Zhu, Y. Cui, L. Mu, L. Tang, Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation. Int. J. Thermophys. 34, 2307 (2013)

    Article  Google Scholar 

  72. P. Sharma, N. Sharma, N. Neelam, Optical properties of aluminium oxide nanoparticles synthesized by leaf extract of Ocimum sanctum. J. Nanosci. Technol. 5, 817 (2019)

    Article  Google Scholar 

  73. H. Hakim, N. Al-Garah, A. Hashim, The Effect of aluminum oxide nanoparticles on optical properties of (polyvinyl alcohol-polyethylene glycol) blend. J. Industr. Engin. Res. 1, 94 (2015)

    Google Scholar 

  74. M. Rivero, J. Hu, D. Jaque, M. Cañete, J. Sánchez-Marcos, A. Muñoz-Bonilla, Compositional tuning of light-to-heat conversion efficiency and of optical properties of superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C 122, 16389 (2018)

    Article  Google Scholar 

  75. D. Song, Y. Wang, D. **g, J. Geng, Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties. Int. J. Heat Mass Transf. 96, 430 (2016)

    Article  Google Scholar 

  76. A. Hashim, M. Habeeb, Q. Jebur, Structural, dielectric and optical properties for (polyvinyl alcohol–polyethylene oxide-manganese oxide) nanocomposites. Egypt. J. Chem 62, 735 (2019)

    Google Scholar 

  77. M.A. Gondal, Tawfik A. Saleh, Q. Drmosh, Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids. Sci. Adv. Mater. 4, 507 (2012)

    Google Scholar 

  78. C.-Y. Su, H.-C. Lin, T.-K. Yang, C.-K. Lin, Structure and optical properties of tungsten oxide nanomaterials prepared by a modified plasma arc gas condensation technique. J. Nanopart. Res. 12, 1755 (2010)

    Google Scholar 

  79. H. Zhang, M.T. Swihart, Synthesis of tellurium dioxide nanoparticles by spray pyrolysis. Chem. Mater. 19, 1290 (2007)

    Article  Google Scholar 

  80. M.M. Ali, H.S. Mahdi, A. Parveen, A. Azam. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conf. Proc. 1953, id.030044 (2018)

    Google Scholar 

  81. N.C. Angastiniotis, S. Christopoulos, K.C. Petallidou, A.M. Efstathiou, A. Othonos, L. Koutsokeras, Controlling the optical properties of nanostructured oxide-based polymer films. Sci. Rep. 11, 16009 (2021)

    Article  Google Scholar 

  82. I.H. Hilal, H.l. Abdullah, A.M. Ibraheem, Effect of aluminum oxide nanoparticles films thickness on optical properties. Int. J. Scien. Res. Manag. 6, 116 (2018)

    Google Scholar 

  83. I.N. Bazhukova, S.Y. Sokovnin, V.G. Ilves, A.V. Myshkina, R.A. Vazirov, N. Pizurova, V.V. Kasyanova, Luminescence and optical properties of cerium oxide nanoparticles. Opt. Mater. 92, 136 (2019)

    Google Scholar 

  84. M. Milanese, G. Colangelo, A. Creti, M. Lomascolo, F. Iacobazzi, A. de Risi, Optical absorption measurements of oxide NPs for application as NF in direct absorption solar power systems. Sol. Energy Mater. Sol. Cells 147, 315 (2016a)

    Article  Google Scholar 

  85. X. Zhu, J. Wang, D. Nguyen, J. Thomas, R.A. Norwood, N. Peyghambarian, Linear and nonlinear optical properties of Co3O4 nanoparticle-doped polyvinyl-alcohol thin films. Opt. Mater. Exp. 2, 103 (2012)

    Article  Google Scholar 

  86. F. Zhang, R.-J. Zhang, D.-X. Zhang, Z.-Y. Wang, J.-P. Xu, Y.-X. Zheng, L.-Y. Chen et al., Temperature-dependent optical properties of titanium oxide thin films TiO2 studied by spectroscopic ellipsometry. Appl. Phys. Exp. 6, 121101 (2013)

    Google Scholar 

  87. J.H. Wray, J.T. Neu, Refractive index of several glasses as a function of wavelength and temperature. J. Opt. Soc. Amer. 59, 774 (1969)

    Article  Google Scholar 

  88. C.Z. Tan, J. Arndt, Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range. J. Phys. Chem. Solids 61, 1315 (2000)

    Article  Google Scholar 

  89. Y.K. Lingart, V.A. Petrov, N.A. Tikhonova, Optical properties of alumina under high temperatures. Termophys. High Temperat. 20, 872–880 (1982, in Russian)

    Google Scholar 

  90. V. Pustovalov, Optical properties of nanoparticles dispersed in ambient medium and their dependences on temperature. Curr. Nanomater. 8, 233–258 (2023)

    Article  Google Scholar 

  91. Y.-N. Wu, W.A. Saidi, P. Ohodnicki, B. Chorpening, Y. Duan, First-principles investigations of the temperature dependence of electronic structure and optical properties of rutile TiO2. J. Phys. Chem. C 122, 22642 (2018)

    Article  Google Scholar 

  92. A.M. Cretì, A. Epifani, M. Taurino, F. Catalano, M. Casino, M. Lomascolo, A. Milanese, A. de Risi, Optical absorption measurements at high temperature (500 °C) of oxide nanoparticles for application as gas-based nanofluid in solar thermal collector systems. Adv. Mater. Res. 773, 80 (2013)

    Article  Google Scholar 

  93. M. Milanese, G. Colangelo, A. Cretì, M. Lomascolo, F. Iacobazzi, A. De Risi, Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems—Part II: ZnO, CeO2, Fe2O3 nanoparticles behavior. Sol. Energy Mater. Sol. Cells 147, 321 (2016b)

    Article  Google Scholar 

  94. G. Plass, Temperature dependence of the Mie scattering and absorption cross section for aluminum oxide. Appl. Opt. 4, 1616 (1965)

    Article  Google Scholar 

  95. O.A. Yeshchenko, I.S. Bondarchuk, V.S. Gurin, I.M. Dmitruk, A.V. Kotko, Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf. Sci. 608, 281 (2013)

    Article  Google Scholar 

  96. V.K. Pustovalov, L.G. Astaf’eva, Temperature dependences of the optical properties of metal nanoparticles in various media. Opt. Spectr. 129, 345 (2021)

    Google Scholar 

  97. O. Yeshchenko, I. Dmitruk, A. Alekseenko, A. Kotko, J. Verdal, A. Pinchuk. Size and temperature effects on the surface resonance in silver nanoparticles. Plasmonics 7, 685 (2012)

    Google Scholar 

  98. R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye sensitized solar cells. J. Am. Ceram. Soc. 92, 289 (2009)

    Article  Google Scholar 

  99. O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4, 592 (2009)

    Article  Google Scholar 

  100. D.K. Kumar, J. Kriz, N. Bennett, B. Chen, H. Upadhayaya, K.R. Reddy, V. Sadhu, Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review. Mater. Sci. Eng. Technol. 3, 472 (2020)

    Google Scholar 

  101. S. Akin, S. Sonmezoglu, Metal oxide nanoparticles as electron transport layer for highly efficient dye-sensitized solar cells. Chapter 2. 39–79, in Emerging Materials for Energy Conversion and Storage. eds. by K.Y. Cheong, M.A. Fraga, G. Impellizzeri (Elsevier, Amsterdam, 2018)

    Google Scholar 

  102. Y. Wang, J.F. Pierson, Binary copper oxides as photovoltaic absorbers: recent progress in materials and applications. J. Phys. D: Appl. Phys. 54, 263002 (2021)

    Article  Google Scholar 

  103. A. Bhaumik, A. Haque, P. Karnati, K. Ghosh, Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 572, 126 (2014)

    Article  Google Scholar 

  104. H. Siddiqui, M.R. Parra, P. Pandey, M.S. Qureshi, F.Z. Haque, Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency. J. Sci.: Adv. Mater. Dev. 5, 104 (2020)

    Google Scholar 

  105. V. Korstgens, S. Proller, T. Buchmann, D. Mosegui Gonzalez, L. Song, Y. Yao, W. Wang, J. Werhahn, G. Santoro, S.V. Roth, H. Iglev, R. Kienberger, P. Meller-Buschbaum, Laser-ablated titania nanoparticles for aqueous processed hybrid solar cells. Nanoscale 7, 2900 (2015)

    Google Scholar 

  106. S. Shao, K. Zheng, K. Zidek, P. Chabera, T. Pullerits, F. Zhang, Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells. Sol. Eng. Mat. Sol. Cells 118, 43 (2013)

    Article  Google Scholar 

  107. R. Schlogl, Heterogeneous Catalysis. Angew. Chem. 127, 3531 (2015)

    Google Scholar 

  108. R. Schlögl, Material Science for catalysis: Quo vadis? Z. Anorg. Allg. Chem. 647, 1998 (2021)

    Article  Google Scholar 

  109. S.W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol. C 24, 64 (2015)

    Article  Google Scholar 

  110. M. Zimbone, M.A. Buccheri, G. Cacciato, R. Sanz, G. Rappazzo, S. Boninelli, R. Reitano, L. Romano, V. Privitera, M.G. Grimaldi, Photocatalytic and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl. Catal. B 165, 487 (2015)

    Article  Google Scholar 

  111. S. Filice, G. Compagnini, R. Fiorenza, S. ScirH, L. D’Urso, M.E. Fragal, P. Russo, E. Fazio, S. Scalese, Laser processing of TiO2 colloids for an enhanced photocatalytic water splitting activity. J. Coll. Interface Sci. 489, 131 (2017)

    Article  Google Scholar 

  112. A. Bagabas, A. Al Shammari, M. Aboud, H. Kosslick, Room temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photo-degradation. Nanosc. Res. Let. 8, 516 (2013)

    Google Scholar 

  113. I. Rocha-Mendoza, S. Camacho-Lopez, Y.Y. Luna-Palacios, Y. Esqueda-Barrjn, M.A. Camacho-Lopez, M. Camacho-Lopez, G. Aguilar, Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids. Opt. Las. Technol. 99, 118 (2018)

    Google Scholar 

  114. R. Niyuki, H. Fujiwara, T. Nakamura, Y. Ishikawa, N. Koshizaki, T. Tsuji, K. Sasaki, Double threshold behavior in a resonance-controlled ZnO random laser. APL Photonics 2, 036101 (2017)

    Article  Google Scholar 

  115. H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102 (2011)

    Article  Google Scholar 

  116. R.A. Ismail, S.A. Zaidan, R.M. Kadhim, Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl. Nanosci. 7, 477 (2017)

    Article  Google Scholar 

  117. J.E. Song, Y. Hwan, K. Young, S. Kang, Preparation of indium tin oxide nanoparticles and their application to near IR-reflective film. Curr. Appl. Phys. 6, 791 (2006)

    Article  Google Scholar 

  118. C. Kim, J.-W. Park, J. Kim, S.-J. Hong, M. Jung Lee, A highly efficient indium tin oxide nanoparticles (ITO-NPs) transparent heater based on solution-process optimized with oxygen vacancy control. J. Alloys Compd. 726, 712 (2017)

    Google Scholar 

  119. A. Sosna-Głębska, N. Szczecińska, K. Znajdek, M. Sibiński, Review on metallic oxide nanoparticles and their application in optoelectronic devices. Acta Innov. 30, 5 (2019)

    Article  Google Scholar 

  120. F. Benyettou, J.A. Ocadiz Flores, F. Ravaux, R. Rezgui, M. Jouiad, S.I. Nehme, R.K. Parsapur, J.C. Olsen, P. Selvam, A. Trabolsi, Mesoporous γ‐iron oxide nanoparticles for magnetically triggered release of doxorubicin and hyperthermia treatment. Chem. A Eur. J. 22, 17020 (2016)

    Google Scholar 

  121. E.C. Abenojar, S. Wickramasinghe, J. Bas-Concepcion, A.C.S. Samia, Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 26, 440 (2016)

    Google Scholar 

  122. Z. Shen, A. Wu, X. Chen, Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 14, 1352 (2017)

    Article  Google Scholar 

  123. M. Jeon, A. Mackenzie V. Halbert, Z.R. Stephen, M. Zhang, Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and perspectives. Adv. Mat. 33, 1906539 (2021)

    Google Scholar 

  124. C. Wang, S. Cao, X. Tie, B. Qiu, A. Wu, Z. Zheng, Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice. Mol. Biol. Rep. 38, 523 (2011)

    Article  Google Scholar 

  125. P.F. Zeni, D.P.D. Santos, R.R. Canevarolo, J.A. Yunes, F.F. Padilha, J.R.L.C. de Albuquerque, S.M. Egues, M.L. Hernández-Macedo, Photocatalytic and cytotoxic effects of nitrogen-doped TiO2 nanoparticles on melanoma cells. J. Nanosci. Nanotechnol. 18, 3722 (2018)

    Article  Google Scholar 

  126. W. Ni, M. Li, J. Cui, Z. **ng, Z. Li, X. Wu, E. Song, M. Gong, W. Zhou, 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater. Sci. Eng. C 81, 252 (2017)

    Article  Google Scholar 

  127. M. Kulkarni, A. Mazare, E. Gongadze, Š Perutkova, V. Kralj-Iglič, I. Milošev, P. Schmuki, A. Iglič, M. Mozetič, Titanium nanostructures for biomedical applications. Nanotechnology 26, 062002 (2015)

    Article  Google Scholar 

  128. M. Sajid, Z. Said, R. Saidur, M. Sabri, Applicability of alumina nanofluid in direct absorption solar collectors. Appl. Mech. Mater. 699, 366 (2015)

    Article  Google Scholar 

  129. H. Kumar, B. Gupta, G.D. Agrawal, J. Mathur, Experimental study of water-based Al2O3 nanofluid flow in direct absorption solar collector. Soft Mater. 357, 30 (2015)

    Google Scholar 

  130. V.K. Pustovalov, L.G. Astafyeva, W. Fritzsche, Optical properties of nanoparticles and nanofluids for direct absorption of solar radiation. Nanotechn. Environ. Eng. 3, 15 (2018)

    Article  Google Scholar 

  131. V. Bhalla, H. Tyagi, Solar energy harvesting by cobalt oxide nanoparticles in nanofluid absorption based system. Sustain. Eng. Technol. Asses. 24, 45 (2017)

    Google Scholar 

  132. M. Hamdan, M. Sarsour, Effect of nanoparticles on the performance of solar flat plate collectors. J. Ecol. Eng. 19, 1 (2018)

    Article  Google Scholar 

  133. M. Esmaeili, M. Karami, S. Delfani, Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid. Int. J. Energy Res. 44, 5527 (2020)

    Article  Google Scholar 

  134. M.A. Hamdan, A.M. Al Momani, O. Ayadi, A.H. Sakhrieh, F. Manzano-Agugliaro, Enhancement of solar water desalination using copper and aluminum oxide nanoparticles. Water 13, 1914 (2021)

    Google Scholar 

  135. A.L. Chibac-Scutaru, V. Podasca, I.A. Dascalu, V. Melinte, Exploring the influence of synthesis parameters on the optical properties for various CeO2 nanoparticles. Nanomaterials 12, 1402 (2022)

    Article  Google Scholar 

  136. M.A. Zwijnenburg, The effect of particle size on the optical and electronic properties of magnesium oxide nanoparticles. Phys. Chem. Chem. Phys. 23, 21579 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor K. Pustovalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pustovalov, V.K. (2023). Thermo-Optical Properties of Metal Oxide Nanoparticles and Their Applications. In: Kumar, V., Ayoub, I., Sharma, V., Swart, H.C. (eds) Optical Properties of Metal Oxide Nanostructures . Progress in Optical Science and Photonics, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-99-5640-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5640-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5639-5

  • Online ISBN: 978-981-99-5640-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation