Effect of Magnetic Field on Couette Flow in a Fluid-Saturated Porous-Filled Duct Under the Local Thermal Non-equilibrium with Viscous Dissipation

  • Conference paper
  • First Online:
Advances in Mechanical Engineering and Material Science (ICAMEMS 2023)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 145 Accesses

Abstract

In our present analysis, we explore the impact of the magnetic field on the Couette flow occurring within a duct that contains a porous material. This investigation incorporates considerations of viscous dissipation and local thermal non-equilibrium (LTNE). The lower plate experiences movement and is exposed to isoflux boundary conditions, whereas the upper plate remains stationary and adiabatic. To describe the one-directional flow within the porous region, we utilize the Darcy–Brinkman (DB) model. The investigations also aim to quantify the effects of the Hartmann number (MW), thermal conductivity ratio (κ), Brinkman number (BrW), and Biot number (BiW) on enhancing heat transfer. Analytical solutions are derived for the governing equations, providing fully developed profiles of Nusselt numbers and dimensionless temperatures for both the fluid and solid phases. In the Couette flow model, the presence of a magnetic field impacts the temperature distribution in both phases. Furthermore, irrespective of the Hartmann number (MW) in the Couette flow, the temperature in the solid phase is consistently higher than that in the fluid phase, thereby confirming the existence of local thermal non-equilibrium (LTNE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vafai K, Tien CL (1981) Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24(2):195–2031

    Article  MATH  Google Scholar 

  2. Quintard M, Whitaker S (1993) One and two-equation models for transient diffusion processes in two-phase systems. Adv Heat Transf 23:369–465

    Article  Google Scholar 

  3. Gupta, N., Bhargavi. D.: The Influence of Magnetic Effect in a Channel Partially Filled with Porous Material: A Numerical Investigation. MMCITRE 2022, vol. 1440, pp. 415–426. Springer Nature, Singapore (2023).

    Google Scholar 

  4. Gupta, N., Bhargavi. D.: Effect of Magnetic Field on the Develo** Thermal Field in a Duct Filled with Porous Media under Local Thermal Non-Equilibrium with a Nonlinear Flow Model. J Adv Res Fluid Mech Therm Sci 103(1), 87–104 (2023).

    Google Scholar 

  5. Vafai K, Sozen M (1990) Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed. ASME J Heat Transf 112(3):690–699

    Article  Google Scholar 

  6. Amiri A, Vafai K (1994) Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media. Int J Heat Mass Transf 37(6):939–954

    Article  Google Scholar 

  7. Nield DA, Bejan A (2013) Convection in Porous Media, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  8. Yi Y, Bai X, Kuwahara F, Nakayama A (2021) Analytical and numerical study on thermally develo** forced convective flow in a channel filled with a highly porous medium under local thermal non-equilibrium. Transp Porous Media 136:541–567

    Article  MathSciNet  Google Scholar 

  9. Virto L, Carbonell M, Castilla R, Gamez-Montero PJ (2009) Heating of saturated porous media in practice: several causes of local thermal non-equilibrium. Int J Heat Mass Transf 52:5412–5422

    Article  MATH  Google Scholar 

  10. Dehghan M, Valipour MS, Keshmiri A, Saedodin S, Shokri N (2016) On the thermally develo** forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study. Int J Heat Mass Transf 92:815–823

    Article  Google Scholar 

  11. Ting TW, Hung YM, Guo N (2014) Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels. Int Commun Heat Mass Transf 57:309–318

    Article  Google Scholar 

  12. Torabi M, Zhang K, Yang G, Wang J, Wu P (2015) Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy 82:922–938

    Article  Google Scholar 

  13. Buonomo B, Manca O, Lauriat G (2016) Forced convection in porous microchannels with viscous dissipation in local thermal non-equilibrium conditions. Int Commun Heat Mass Transf 76:46–54

    Article  Google Scholar 

  14. Nakayama A (1992) Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. J. Fluid Eng 114(4):642–647

    Article  Google Scholar 

  15. Pantokratoras A (2007) Fully Developed Couette Flow of Three Fluids with Variable Thermophysical Properties Flowing through a Porous Medium Channel Heated Asymmetrically with Large Temperature Differences. J Heat Transf 129(12):1742

    Article  Google Scholar 

  16. Kuznetsov AV (1998) Analytical Investigation of Couette Flow in a Composite Channel Partially Filled with a Porous Medium and Partially with a Clear Fluid. Int J Heat Mass Transf 41(16):2556–2560

    Article  MATH  Google Scholar 

  17. Kaurangini ML, Jha BK (2011) Unsteady Generalized Couette Flow in Composite Microchannel. Applied Math Mech. 32(1):23–32

    Article  MATH  Google Scholar 

  18. Jha BK, Odengle JO (2015) Unsteady Couette Flow in a Composite Channel Partially Filled with Porous Material: A Semi-Analytical Approach. Transp Porous Media 107(1):219–234

    Article  MathSciNet  Google Scholar 

  19. Baig, F. M., Chen, G. M., Lim, B. K.: Thermal Viscous Dissipative Couette Flow in a Porous Medium Filled Microchannel. Proc of ASME 5th Int Conf Micro/Nanoscale Heat and Mass Transf Biopolis, Singapore 1–9 (2017).

    Google Scholar 

  20. Chen GM, Baig MF, Tso CP (2021) Local Thermal Nonequilibrium Viscous Dissipative Couette Flow in A Porous Medium. Spec Top Rev Porous Media 12(6):31–41

    Article  Google Scholar 

  21. Gupta N, Bhargavi D (2022) Numerical investigation of heat transfer in a develo** thermal field in the porous-filled duct under local thermal nonequilibrium: constant wall heat flux. Spec Top Rev Porous Media 13(5):49–81

    Article  Google Scholar 

  22. Bhargavi D, Reddy JSK (2018) Analytical study of forced convection in a channel partially filled with porous material with the effect of magnetic field: constant wall heat flux. Spec Top Rev Porous Media 9(3):201–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bhargavi .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} A_{1} & = \varepsilon \left( {1 + {\text{Da}}M^{2} } \right),A_{2} = {{\sqrt {A_{2} } } \mathord{\left/ {\vphantom {{\sqrt {A_{2} } } 2}} \right. \kern-0pt} 2},A_{3} = {\text{csch}} \left[ {\sqrt {A_{2} } } \right]A_{4} = 4{\text{Da}}_{W} \left( {A_{2} A_{3} } \right)^{2} , \\ A_{5} & = \left( {\varepsilon A_{3}^{2} + A_{4} } \right),A_{6} = \left( {\varepsilon A_{3}^{2} - A_{4} } \right) \\ B_{1} & = \sqrt {{{\kappa {\text{Bi}}_{W} } \mathord{\left/ {\vphantom {{\kappa {\text{Bi}}_{W} } 2}} \right. \kern-0pt} 2}} ,B_{2} = \left( {1 + e^{{2\sqrt {2\kappa {\text{Bi}}_{W} } }} } \right),B_{3} = \left( {\kappa {\text{Bi}}_{W} - 2A_{2}^{2} } \right), \\ B_{4} & = \left( {\kappa {\text{Bi}}_{W} - 4A_{2}^{2} } \right),B_{5} = \left( {\kappa {\text{Bi}}_{W} - 8A_{2}^{2} } \right) \\ B_{6} & = \left( {\kappa {\text{Bi}}_{W} - 16A_{2}^{2} } \right),B_{7} = 2\varepsilon {\text{Bi}}_{W} \sinh \left[ {2A_{2}^{2} } \right]A_{3} B_{5} ,B_{8} = \kappa {\text{Bi}}_{W} cosh\left[ {4A_{2} } \right]A_{5} \\ \end{aligned}$$
$$\begin{aligned} C_{1} & = B_{7} + {\text{Br}}_{W} A_{2}^{2} B_{3} \left[ {B_{8} - A_{6} B_{5} } \right],C_{2} = - 4A_{2} A_{6} B_{5} + A_{5} B_{6} \sinh \left[ {4A_{2} } \right] \\ C_{3} & = - 12\varepsilon \sinh \left[ {4A_{2} } \right]A_{3} B_{4} B_{5} + \kappa {\text{Br}}_{W} \sinh \left[ {3A_{2} } \right]^{2} A_{5} B_{3} B_{6} \\ C_{4} & = - 4\varepsilon {\text{Bi}}_{W} A_{3} \sinh \left[ {2A_{2} } \right] + {\text{Br}}_{W} \left( {1 + \kappa {\text{Bi}}_{W} - cosh\left[ {2A_{2} } \right]} \right)A_{6} B_{2} B_{3} B_{5} \\ C_{5} & = 8\varepsilon {\text{Bi}}_{W} A_{2}^{2} A_{3} - \kappa {\text{Br}}_{W} \left( {{\text{Br}}_{W} B_{3} \sinh \left[ {2A_{2} } \right]A_{6} + 4\kappa Bi_{W} A_{3} } \right)B_{5} + A_{2} C_{4} \\ C_{6} & = \kappa {\text{Bi}}_{W} {\text{Br}}_{W} A_{4} B_{3} \left( {B_{6} - 8B_{5} } \right) + \kappa \varepsilon {\text{Bi}}_{W} {\text{Br}}_{W} A_{3}^{2} B_{3} \left( {B_{6} + 8B_{5} } \right) \\ & \quad - 16\left( {1 + \kappa {\text{Bi}}_{W} } \right)B_{7} + 2{\text{Br}}_{W} B_{3} B_{5} B_{8} \\ C_{7} & = \sinh \left[ {2B_{1} } \right]A_{2} - \sinh \left[ {2A_{2} } \right]B_{1} ,C_{8} = \sinh \left[ {2A_{2} } \right]\sinh \left[ {2B_{1} } \right]B_{1} + A_{2} \\ C_{9} & = 32\kappa \varepsilon {\text{Bi}}_{W}^{2} cosh\left[ {A_{2} } \right]A_{3} B_{5} + \sinh \left[ {A_{2} } \right]C_{6} \\ C_{10} & = A_{2} B_{2} \left[ {\varepsilon 8A_{3} \left( {\cosh \left[ {2A_{2} } \right]B_{4} - \kappa {\text{Bi}}} \right)B_{5} - \kappa {\text{Br}}B_{3} C_{2} } \right] + \varepsilon 16B_{2} A_{2}^{2} A_{3} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, N., Bhargavi, D. (2024). Effect of Magnetic Field on Couette Flow in a Fluid-Saturated Porous-Filled Duct Under the Local Thermal Non-equilibrium with Viscous Dissipation. In: Tambe, P., Huang, P., Jhavar, S. (eds) Advances in Mechanical Engineering and Material Science. ICAMEMS 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-5613-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5613-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5612-8

  • Online ISBN: 978-981-99-5613-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation