Role of Synbiotics in Cardiovascular Diseases

  • Reference work entry
  • First Online:
Synbiotics in Human Health: Biology to Drug Delivery

Abstract

Although recommendations for the use of probiotics, prebiotics, and synbiotics are often based on short observations and small clinical trials, recent research shows that these nutrients may be vital in the prevention and treatment of cardiovascular disease (CVD). In this chapter, we’ll take a look at the research linking probiotics, prebiotics, and synbiotics with heart disease. Despite the recent explosion in research on probiotics, prebiotics, and synbiotics – much of which has focused on the effect probiotics have on CVD – their mechanisms remain poorly understood. There is evidence that probiotics may reduce cholesterol levels and provide protection against CVD via increasing bile salt production and bile acid deconjugation. While studies have demonstrated that synbiotics and prebiotics both have beneficial benefits, probiotics also seem to possess anti-inflammatory, antiplatelet, and antioxidative properties. Probiotics have been demonstrated to be beneficial not only in experimental animals and in vitro, but also in humans, where their treatment reduces the Risk of CVD. Further experimental study is needed before probiotics, prebiotics, and synbiotics already on the market may be used to treat or prevent cardiovascular disease. Well-designed clinical studies are especially important for determining the effect of probiotics on TMAO, which is regarded to be an indication of CVDs, and for determining the long-term effects and activity of synbiotic, prebiotic, and probiotic diets in combination with pharmaceutical treatment (for example, aspirin). It’s not easy to tell whether or not these supplements aid in the treatment and prevention of CVDs, but it’s important to stress that no adverse effects have been discovered in clinical studies so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Estrada-Angulo A, Zapata-Ramírez O, Castro-Pérez BI, Urías-Estrada JD, Gaxiola-Camacho S, Angulo-Montoya C, Ríos-Rincón FG, Barreras A, Zinn RA, Leyva-Morales JB, Perea-Domínguez X, Plascencia A (2021) The effects of single or combined supplementation of probiotics and prebiotics on growth performance, dietary energetics, carcass traits, and visceral mass in lambs finished under subtropical climate conditions. Biology 10. https://doi.org/10.3390/biology10111137

  2. Fernandez MA, Marette A (2017) Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Adv Nutr (Bethesda, Md.) 8:155s–164s

    Article  Google Scholar 

  3. Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Altamimi ASA, Singh SK, Dua K, Gupta G (2022) A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 363:110011

    Article  CAS  PubMed  Google Scholar 

  4. Alharbi KS, Shaikh MAJ, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Imam SS, Alshehri S, Ghoneim MM, Singh SK (2022) PI3K/Akt/mTOR pathways inhibitors with potential prospects in non-small-cell lung cancer. J Environ Pathol Toxicol Oncol 41:85

    Article  PubMed  Google Scholar 

  5. Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M (2016) Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol 22:7186–7202

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Larsen V, Ierodiakonou D, Jarrold K, Cunha S, Chivinge J, Robinson Z, Geoghegan N, Ruparelia A, Devani P, Trivella M, Leonardi-Bee J, Boyle RJ (2018) Diet during pregnancy and infancy and risk of allergic or autoimmune disease: a systematic review and meta-analysis. PLoS Med 15:e1002507

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ahmad A, Gupta G, Afzal M, Kazmi I, Anwar F (2013) Antiulcer and antioxidant activities of a new steroid from Morus alba. Life Sci 92:202–210

    Article  CAS  PubMed  Google Scholar 

  8. Alharbi KS, Afzal O, Kazmi I, Shaikh MAJ, Thangavelu L, Gulati M, Singh SK, Jha NK, Gupta PK, Chellappan DK (2022) Nuclear factor-kappa B (NF-κB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chem Biol Interact 354:109842

    Article  CAS  PubMed  Google Scholar 

  9. Aljabali AA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh KM, Zoubi MSA, Al-Trad B, Nasef MM, Satija S, Mehta M (2020) Correction: Aljabali, AAA; et al. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer via down Regulation of Nuclear p65 and HIF-1α, Cancers 2020, 12, 113. Cancers 12:3587

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aljabali AA, Hassan SS, Pabari RM, Shahcheraghi SH, Mishra V, Charbe NB, Chellappan DK, Dureja H, Gupta G, Almutary AG (2021) The viral capsid as novel nanomaterials for drug delivery. Future Sci OA 7:FSO744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grimshaw K, Logan K, O'Donovan S, Kiely M, Patient K, van Bilsen J, Beyer K, Campbell DE, Garcia-Larsen V, Grabenhenrich L, Lack G, Mills C, Wal JM, Roberts G (2017) Modifying the infant’s diet to prevent food allergy. Arch Dis Child 102:179–186

    Article  PubMed  Google Scholar 

  12. Halken S, Muraro A, de Silva D, Khaleva E, Angier E, Arasi S, Arshad H, Bahnson HT, Beyer K, Boyle R, du Toit G, Ebisawa M, Eigenmann P, Grimshaw K, Hoest A, Jones C, Lack G, Nadeau K, O’Mahony L, Szajewska H, Venter C, Verhasselt V, Wong GWK, Roberts G (2021) EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol 32:843–858

    Article  PubMed  Google Scholar 

  13. Hernández J, Benedito JL, Abuelo A, Castillo C (2014) Ruminal acidosis in feedlot: from aetiology to prevention. Sci World J 2014:702572

    Article  Google Scholar 

  14. Anwar F, Singh R, Maurya H, Kazmil I, Afzal M, Kandpal G, Gupta G, Kumar P (2013) Pharmacological role of Alstonia scholaris leaves for its anticonvulsant and sedative action. Am J Phytomed Clin Ther 1:478–490

    Google Scholar 

  15. Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, Kr A, Corrie L (2022) Recent progress in development of dressings used for diabetic wounds with special emphasis on scaffolds. Biomed Res Int 2022:1659338

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, **n W, **ong J, Yao M, Zhang B, Zhao J (2022) The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease. Front Pharmacol 13:837500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iatcu CO, Steen A, Covasa M (2021) Gut microbiota and complications of Type-2 diabetes. Nutrients 14. https://doi.org/10.3390/nu14010166

  18. Jackson DJ, Hartert TV, Martinez FD, Weiss ST, Fahy JV (2014) Asthma: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc 11(Suppl 3):S139–S145

    Article  PubMed  PubMed Central  Google Scholar 

  19. Awati SS, Singh SK, Raizaday A, Kumar P, Singh Y, Shaikh MAJ, Gupta G (2022) Microbiome in influenza-A virus infection. In: Microbiome in inflammatory lung diseases. Springer, Singapore, pp 295–307

    Chapter  Google Scholar 

  20. Bakshi HA, Zoubi MSA, Faruck HL, Aljabali AA, Rabi FA, Hafiz AA, Al-Batanyeh KM, Al-Trad B, Ansari P, Nasef MM (2020) Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients 12:1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jama HA, Kaye DM, Marques FZ (2019) The gut microbiota and blood pressure in experimental models. Curr Opin Nephrol Hypertens 28:97–104

    Article  PubMed  Google Scholar 

  22. Jansen PM, Abdelbary MMH, Conrads G (2021) A concerted probiotic activity to inhibit periodontitis-associated bacteria. PLoS One 16:e0248308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG (2019) Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 50:628–639

    Article  PubMed  Google Scholar 

  24. Bisht A, Hemrajani C, Rathore C, Dhiman T, Rolta R, Upadhyay N, Nidhi P, Gupta G, Dua K, Chellappan DK (2022) Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Deliv Transl Res 12:2501–2517

    Article  CAS  PubMed  Google Scholar 

  25. Bisht A, Hemrajani C, Upadhyay N, Nidhi P, Rolta R, Rathore C, Gupta G, Dua K, Chellappan DK, Dev K (2021) Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther Deliv 13:13–29

    Article  PubMed  Google Scholar 

  26. Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, Urdaci MC, Marette A (2015) Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J 39:291–303

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leustean AM, Ciocoiu M, Sava A, Costea CF, Floria M, Tarniceriu CC, Tanase DM (2018) Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J Diabetes Res 2018:5205126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu L, He X, Feng Y (2019) Coronary heart disease and intestinal microbiota. Coron Artery Dis 30:384–389

    Article  PubMed  Google Scholar 

  29. Mamic P, Chaikijurajai T, Tang WHW (2021) Gut microbiome – a potential mediator of pathogenesis in heart failure and its comorbidities: state-of-the-art review. J Mol Cell Cardiol 152:105–117

    Article  CAS  PubMed  Google Scholar 

  30. Chan Y, Prasher P, Löbenberg R, Gupta G, Singh SK, Oliver BG, Chellappan DK, Dua K (2021) Applications and practice of advanced drug delivery systems for targeting toll-like receptors in pulmonary diseases. Nanomedicine (Lond, UK) 16:783–786

    Article  CAS  Google Scholar 

  31. Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M (2020) Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 10:2075–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manzoor S, Wani SM, Ahmad Mir S, Rizwan D (2022) Role of probiotics and prebiotics in mitigation of different diseases. Nutrition (Burbank, Los Angeles County, Calif.) 96:111602

    Article  CAS  PubMed  Google Scholar 

  33. McCarty MF, DiNicolantonio JJ (2021) Maintaining effective beta cell function in the face of metabolic syndrome-associated glucolipotoxicity-nutraceutical options. Healthcare (Basel, Switzerland) 10. https://doi.org/10.3390/healthcare10010003

  34. Moludi J, Maleki V, Jafari-Vayghyan H, Vaghef-Mehrabany E, Alizadeh M (2020) Metabolic endotoxemia and cardiovascular disease: a systematic review about potential roles of prebiotics and probiotics. Clin Exp Pharmacol Physiol 47:927–939

    Article  CAS  PubMed  Google Scholar 

  35. Moon J, Yoon CH, Choi SH, Kim MK (2020) Can gut microbiota affect dry eye syndrome? Int J Mol Sci 21. https://doi.org/10.3390/ijms21228443

  36. Chellappan DK, Prasher P, Shukla SD, Yee TW, Kah TK, Xyan TW, Kid TW, Si TH, Weng TS, Molugulu N (2022) Exploring the role of antibiotics and steroids in managing respiratory diseases. J Biochem Mol Toxicol 36:e23174

    Article  CAS  PubMed  Google Scholar 

  37. Chellappan DK, Yee NJ, Singh BJKAJ, Panneerselvam J, Madheswaran T, Chellian J, Satija S, Mehta M, Gulati M, Gupta G (2019) Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv 10:281–293

    Article  CAS  PubMed  Google Scholar 

  38. Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S (2022) Unravelling the therapeutic potential of nano-delivered functional foods in chronic respiratory diseases. Nutrients 14:3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muralitharan RR, Jama HA, **e L, Peh A, Snelson M, Marques FZ (2020) Microbial peer pressure: the role of the gut microbiota in hypertension and its complications. Hypertension (Dallas, Tex : 1979) 76:1674–1687

    Article  CAS  PubMed  Google Scholar 

  40. Nagatomo Y, Tang WH (2015) Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 21:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakov R, Segal JP, Settanni CR, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G (2020) Microbiome: what intensivists should know. Minerva Anestesiol 86:777–785

    Article  PubMed  Google Scholar 

  42. Perez-Gregorio R, Simal-Gandara J (2017) A critical review of bioactive food components, and of their functional mechanisms, biological effects and health outcomes. Curr Pharm Des 23:2731–2741

    Article  PubMed  Google Scholar 

  43. Plata C, Cruz C, Cervantes LG, Ramírez V (2019) The gut microbiota and its relationship with chronic kidney disease. Int Urol Nephrol 51:2209–2226

    Article  PubMed  Google Scholar 

  44. Ramaa CS, Shirode AR, Mundada AS, Kadam VJ (2006) Nutraceuticals – an emerging era in the treatment and prevention of cardiovascular diseases. Curr Pharm Biotechnol 7:15–23

    Article  CAS  PubMed  Google Scholar 

  45. Devi B, Kumar Y, Shrivastav B, Sharma GN, Gupta G, Dua K (2018) Current updates on biological and pharmacological activities of doxycycline. Panminerva Med 60:36–39

    Article  PubMed  Google Scholar 

  46. Dua K, Chakravarthi S, Kumar D, Sheshala R, Gupta G (2013) Formulation, characterization, in vitro, in vivo, and histopathological evaluation of transdermal drug delivery containing norfloxacin and Curcuma longa. Int J Pharm Investig 3:183

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dua K, Gupta G, Chellappan D, Bebawy M, Collet T (2018) Nanoparticle-based therapies as a modality in treating wounds and preventing biofilm. Panminerva Med 60:237–238

    Article  PubMed  Google Scholar 

  48. Rehman A, Arif M, Sajjad N, Al-Ghadi MQ, Alagawany M, Abd El-Hack ME, Alhimaidi AR, Elnesr SS, Almutairi BO, Amran RA, Hussein EOS, Swelum AA (2020) Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult Sci 99:6946–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, Martoni C, O’Neill C, Savignac HM, Stanton C, Ship N, Surette M, Tuohy K, van Hemert S (2017) How do probiotics and prebiotics function at distant sites? Benefic Microbes 8:521–533

    Article  CAS  Google Scholar 

  50. Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C (2015) Functional food addressing heart health: do we have to target the gut microbiota? Curr Opin Clin Nutr Metab Care 18:566–571

    Article  CAS  PubMed  Google Scholar 

  51. Sánchez-Fuentes A, Rivera-Caravaca JM, López-Gálvez R, Marín F, Roldán V (2021) Non-vitamin K antagonist oral anticoagulants and drug-food interactions: implications for clinical practice and potential role of probiotics and prebiotics. Front Cardiovasc Med 8:787235

    Article  PubMed  Google Scholar 

  52. Scarmozzino F, Poli A, Visioli F (2020) Microbiota and cardiovascular disease risk: a sco** review. Pharmacol Res 159:104952

    Article  CAS  PubMed  Google Scholar 

  53. Scarpellini E, Campanale M, Leone D, Purchiaroni F, Vitale G, Lauritano EC, Gasbarrini A (2010) Gut microbiota and obesity. Intern Emerg Med 5(Suppl 1):S53–S56

    Article  PubMed  Google Scholar 

  54. Schiattarella GG, Sannino A, Esposito G, Perrino C (2019) Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med 29:141–147

    Article  CAS  PubMed  Google Scholar 

  55. Senesi P, Luzi L, Terruzzi I (2020) Adipokines, Myokines, and Cardiokines: the role of nutritional interventions. Int J Mol Sci 21. https://doi.org/10.3390/ijms21218372

  56. Serra J (2012) Intestinal gas: has diet anything to do in the absence of a demonstrable malabsorption state? Curr Opin Clin Nutr Metab Care 15:489–493

    Article  CAS  PubMed  Google Scholar 

  57. Settanni CR, Bibbò S, Ianiro G, Rinninella E, Cintoni M, Mele MC, Cammarota G, Gasbarrini A (2021) Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev Gastroenterol Hepatol 15:599–622

    Article  CAS  PubMed  Google Scholar 

  58. Settanni CR, Ianiro G, Franceschi F, Gasbarrini G, Gasbarrini A (2020) From regular catharsis with Castor oil to recognizing the importance of the intestinal microbiota. Dig Dis (Basel, Switz) 38(2):1–9

    Google Scholar 

  59. Shehata E, Parker A, Suzuki T, Swann JR, Suez J, Kroon PA, Day-Walsh P (2022) Microbiomes in physiology: insights into 21st-century global medical challenges. Exp Physiol 107:257–264

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H (2022) Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 99:384

    Article  Google Scholar 

  61. Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC (2021) Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 321:h275–h291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang WHW, Li DY, Hazen SL (2019) Dietary metabolism, the gut microbiome, and heart failure, nature reviews. Cardiology 16:137–154

    CAS  PubMed  Google Scholar 

  63. Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K, Chunchai T, Kerdphoo S, Eaimworawuthikul S, Thiennimitr P, Pongchaidecha A, Lungkaphin A, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2018) Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur J Nutr 57:2091–2104

    Article  CAS  PubMed  Google Scholar 

  64. Tuohy KM, Fava F, Viola R (2014) ‘The way to a man’s heart is through his gut microbiota’ – dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 73:172–185

    Article  CAS  PubMed  Google Scholar 

  65. Vandenplas Y, Gerlier L, Caekelbergh K, Nan-Study-Group, Possner M (2021) An observational real-life study with a new infant formula in infants with functional gastro-intestinal disorders. Nutrients 13. https://doi.org/10.3390/nu13103336

  66. Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS (2018) Gut microbiota and cardiovascular uremic toxicities. Toxins 10. https://doi.org/10.3390/toxins10070287

  67. Villoslada-Blanco P, Pérez-Matute P, Oteo JA (2021) Lights and shadows of microbiota modulation and cardiovascular risk in HIV patients. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18136837

  68. Vourakis M, Mayer G, Rousseau G (2021) The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci 22:8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weis M (2018) Impact of the gut microbiome in cardiovascular and autoimmune diseases. Clin Sci (London, Engl: 1979) 132:2387–2389

    Article  Google Scholar 

  70. Wu H, Chiou J (2021) Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 13:2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu Z, Mehrabi Nasab E, Arora P, Athari SS (2022) Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med 20:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. **ao J, Peng Z, Liao Y, Sun H, Chen W, Chen X, Wei Z, Yang C, Nüssler AK, Liu J, Yang W (2018) Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res 10:3330–3344

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu H, Yang F, Bao Z (2022) Gut microbiota and myocardial fibrosis. Eur J Pharmacol 940:175355

    Article  PubMed  Google Scholar 

  74. Zepeda-Ortega B, Goh A, Xepapadaki P, Sprikkelman A, Nicolaou N, Hernandez REH, Latiff AHA, Yat MT, Diab M, Hussaini BA, Setiabudiawan B, Kudla U, van Neerven RJJ, Muhardi L, Warner JO (2021) Strategies and future opportunities for the prevention, diagnosis, and management of cow milk allergy. Front. Immunol 12:608372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang WHW, Bäckhed F, Landmesser U, Hazen SL (2019) Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol 73:2089–2105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saini, M. et al. (2024). Role of Synbiotics in Cardiovascular Diseases. In: Dua, K. (eds) Synbiotics in Human Health: Biology to Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-99-5575-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5575-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5574-9

  • Online ISBN: 978-981-99-5575-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation