Identifying the Effect of Stacking Sequence on Water Absorption, Mechanical and Fracture Properties of Flax/Glass Hybrid Composites

  • Conference paper
  • First Online:
Proceedings of the International Symposium on Lightweight and Sustainable Polymeric Materials (LSPM23) (LSPM 2023)

Abstract

With the increasing development and growth of today’s technology, the requirement for material is also expanding gradually, and this challenging need will not be met by using polymers, ceramics, and metal alloys. Natural fiber-reinforced composites entice technologists, and researchers because of their environmentally friendly and degradable properties. NFRC limited their application to interior parts because of their hydrophilic nature. Therefore, these days hybrid composite materials with natural/synthetic fiber reinforcement are in demand to rise wide spectrum of engineering applications. This paper intends to investigate the physio-mechanical characteristics of epoxy composites reinforced with woven flax/glass fiber. These composites with dedicated and hybrid stacking of fiber are fabricated through the compression molding technique. The tests are performed on these composites as per ASTM standards to evaluate their properties as composite density, water absorption, tensile, bending, Izod impact, and fracture toughness. Also, the morphology of ruptured tensile samples is examined through fractography images obtained by Scanning Electron Microscopy (SEM). The density of Flax/Glass hybrid composites is observed in a range of 1.26–1.31 gcc. In the Water Absorption (WA) test, dedicated Flax composites showed the highest maximum WA of 9.86% and the lowest of 1.51% for Glass/Epoxy composites. Comparisons between dedicated Flax composites and hybrid composites have revealed an enhancement in the tensile, impact, flexural, and fracture characteristics. The fiber breaking, delamination, and fiber pull-out were witnessed through SEM images of ruptured tensile test samples. The hybridization of Flax has facilitated the achievement of improved static mechanical and fracture properties and diminished WA when compared to the dedicated Flax composite. This indicates that the developed hybrid composites could be more appropriate as semi-structural components in automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A (2016) Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J Reinf Plast Compos 35:447–470

    Article  CAS  Google Scholar 

  2. Jagadeesh P, Puttegowda M, Rangappa SM, Siengchin S (2022) Role of polymer composites in railway sector: an overview. Appl Sci Eng Prog 15

    Google Scholar 

  3. Deeraj BDS, Joseph K, Jayan JS, Saritha A (2021) Dynamic mechanical performance of natural fiber reinforced composites: a brief review. Appl Sci Eng Prog 14:614–623

    Google Scholar 

  4. Vinod A, Sanjay MR, Siengchin S (2023) Recently explored natural cellulosic plant fibers 2018–2022: a potential raw material resource for lightweight composites. Ind Crops Prod 192:116099

    Article  CAS  Google Scholar 

  5. Narayana VL, Rao LB, Devireddy SBR (2020) Effect of fiber percentage and stacking sequence on mechanical performance of unidirectional hemp and palmyra reinforced hybrid composites. Rev des Compos des Mater Av 30:153–160

    Google Scholar 

  6. Naga Kumar C, Prabhakar MN, Song JI (2019) Effect of interface in hybrid reinforcement of flax/glass on mechanical properties of vinyl ester composites. Polym Test 73:404–411

    Article  CAS  Google Scholar 

  7. Ramesh M, Sudharsan P (2018) Experimental investigation of mechanical and morphological properties of flax-glass fiber reinforced hybrid composite using finite element analysis. SILICON 10:747–757

    Article  CAS  Google Scholar 

  8. Arbelaiz A, Fernández B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos Part A Appl Sci Manuf 36:1637–1644

    Google Scholar 

  9. Kureemun U, Ravandi M, Tran LQN, Teo WS, Tay TE, Lee HP (2018) Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Compos Part B Eng 134:28–38

    Article  CAS  Google Scholar 

  10. Kiran MD, Govindaraju HK, Jayaraju T (2018) Evaluation of mechanical properties of glass fiber reinforced epoxy polymer composites with alumina, titanium dioxide and silicon carbide. In: Materials today: proceedings. Elsevier Ltd, pp 22355–22361

    Google Scholar 

  11. Zhang Y, Li Y, Ma H, Yu T (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177

    Article  CAS  Google Scholar 

  12. Meenakshi CM, Krishnamoorthy A (2018) Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method. In: Materials today: proceedings. Elsevier Ltd, pp 26934–26940

    Google Scholar 

  13. Sathishkumar TP, Navaneethakrishnan P, Maheskumar P (2021) Thermal stability and tribological behaviors of tri-fillers reinforced epoxy hybrid composites. Appl Sci Eng Prog 14:727–737

    Google Scholar 

  14. Vinod A, Tengsuthiwat J, Gowda Y, Vijay R, Sanjay MR, Siengchin S, Dhakal HN (2022) Jute/Hemp bio-epoxy hybrid bio-composites: influence of stacking sequence on adhesion of fiber-matrix. Int J Adhes Adhes 113:103050

    Article  CAS  Google Scholar 

  15. Santulli C (2016) Effect of stacking sequence on the tensile and flexural properties of glass fibre epoxy composites hybridized with basalt, flax or jute fibres. Mater Sci Eng with Adv Res 1:19–25

    Article  Google Scholar 

  16. Cerbu C, Wang H, Botis MF, Huang Z, Plescan C (2020) Temperature effects on the mechanical properties of hybrid composites reinforced with vegetable and glass fibers. Mech Mater 149:103538

    Article  Google Scholar 

  17. Selver E, Ucar N, Gulmez T (2018) Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J Ind Text 48:494–520

    Article  Google Scholar 

  18. Cihan M, Sobey AJ, Blake JIR (2019) Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Compos Sci Technol 172:36–42

    Article  CAS  Google Scholar 

  19. Abd El-baky MA, Attia MA, Abdelhaleem MM, Hassan MA (2020) Mechanical characterization of hybrid composites based on flax, basalt and glass fibers. J Compos Mater 54:4185–4205

    Google Scholar 

  20. Wang H, Yang L, Wu H (2021) Study on mechanical and thermomechanical properties of flax/glass fiber hybrid-reinforced epoxy composites. Polym Compos 42:714–723

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Munde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munde, Y., Shinde, A., Anerao, P., Siva, I. (2023). Identifying the Effect of Stacking Sequence on Water Absorption, Mechanical and Fracture Properties of Flax/Glass Hybrid Composites. In: Mavinkere Rangappa, S., Siengchin, S. (eds) Proceedings of the International Symposium on Lightweight and Sustainable Polymeric Materials (LSPM23). LSPM 2023. Springer Proceedings in Materials, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-99-5567-1_19

Download citation

Publish with us

Policies and ethics

Navigation