Bacteriocins Production Using Whey

  • Chapter
  • First Online:
Whey Valorization

Abstract

The diverse class of antimicrobial proteins/peptides known as bacteriocins from lactic acid bacteria (LAB) has the potential to be employed as bio-preservatives. They exhibit a variety of antibacterial actions across the antibacterial spectrum at low doses, in addition to heat and pH constancy in food. Eminent bacteriocin synthesis is expected in a complicated medium. Yet, the such broth is too costly for a profitable manufacturing technique. It is necessary to employ food-grade media to create stable temperature, broad-division bacteriocins with utmost particular action before using them as food bio-preservatives. Bacteriocins’ under cede in the food-grade environment and labor-intensive, overpriced detoxification techniques, which are appropriate at the laboratory size but not at the industrial level, are the main obstacles to their use as food bio-preservatives. The current review focuses on the manufacture of bacteriocins utilizing complicated and food-grade medium and principally examines the bacteriocin manufacture variants, broth utilized, various manufacture techniques used, and the impact of varied generation methods on bacteriocin production. The purifying techniques developed for efficient bacteriocin recovery at both small and large scales are also a focus of this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriouel, H., Valdivia, E., Martınez-Bueno, M., Maqueda, M., & Gálvez, A. (2003). A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from enterococcus faecalis subsp. liquefaciens A-48-32. Journal of Microbiological Methods, 55, 599–605.

    Article  CAS  PubMed  Google Scholar 

  • Acedo, J. Z., Chiorean, S., Vederas, J. C., & Van Belkum, M. J. (2018). The expanding structural variety among bacteriocins from gram-positive bacteria. FEMS Microbiology Reviews, 42, 805–828.

    Article  CAS  PubMed  Google Scholar 

  • Adwas, A. A., Elsayed, A., Azab, A., & Quwaydir, F. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6, 43–47.

    Article  Google Scholar 

  • Agriopoulou, S., Stamatelopoulou, E., Sachadyn-KrĂłl, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8, 952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, T., Aadil, R. M., Ahmed, H., Ur Rahman, U., Soares, B. C., Souza, S. L., Pimentel, T. C., Scudino, H., GuimarĂŁes, J. T., & Esmerino, E. A. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology, 88, 361–372.

    Article  CAS  Google Scholar 

  • Aksakalli-Magden, Z. B., Ugan, R. A., Toktay, E., Halici, Z., & Cadirci, E. (2023). Potential role of angiotensin converting enzyme/neprilysin pathway and protective effects of omapatrilat for paracetamol-induced acute liver injury. Experimental and Therapeutic Medicine, 25, 1–9.

    Google Scholar 

  • Ali, A., Ain, Q., Saeed, A., Khalid, W., Ahmed, M., & Bostani, A. (2021a). Bio-molecular characteristics of whey proteins with relation to inflammation. In New advances in the dairy industry. IntechOpen.

    Google Scholar 

  • Ali, A., Kousar, S., Khalid, W., Maqbool, Z., Aziz, A., Arshad, M. S., Aadil, R. M., Trif, M., Qin, H., & Manzoor, M. F. (2022a). Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Frontiers in Nutrition, 9, 3015.

    Article  Google Scholar 

  • Ali, A., Manzoor, M. F., Ahmad, N., Aadil, R. M., Qin, H., Siddique, R., Riaz, S., Ahmad, A., Korma, S. A., & Khalid, W. (2022b). The burden of cancer, government strategic policies, and challenges in Pakistan: A comprehensive review. Frontiers in Nutrition, 1553, 940514.

    Article  Google Scholar 

  • Ali, A., Mughal, H., Ahmad, N., Babar, Q., Saeed, A., Khalid, W., Raza, H., & Liu, A. (2021b). Novel therapeutic drug strategies to tackle immune-oncological challenges faced by cancer patients during COVID-19. Expert Review of Anticancer Therapy, 21, 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  • Ali, A., Riaz, S., Sameen, A., Naumovski, N., Iqbal, M. W., Rehman, A., Mehany, T., Zeng, X.-A., & Manzoor, M. F. (2022c). The disposition of bioactive compounds from fruit waste, their extraction, and analysis using novel technologies: A review. PRO, 10, 2014.

    CAS  Google Scholar 

  • Amiali, M., Lacroix, C., & Simard, R. (1998). High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration. World Journal of Microbiology and Biotechnology, 14, 887–894.

    Article  CAS  Google Scholar 

  • Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I., & Koidis, P. (2008). Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresource Technology, 99, 5384–5390.

    Article  CAS  PubMed  Google Scholar 

  • Arab, S. A., Kaemipoor, M., Alkhaleel, R., & Mahdian, A. (2023). Recent trends in develo** whey products by advanced technologies. Scholars Academic Journal of Biosciences, 2, 74–79.

    Article  Google Scholar 

  • Armghan Khalid, M., Niaz, B., Saeed, F., Afzaal, M., Islam, F., Hussain, M., Mahwish, M. S., Khalid, H., Siddeeg, A., & Al-Farga, A. (2022). Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. International Journal of Food Properties, 25, 1817–1847.

    Article  Google Scholar 

  • Aulitto, M., Martinez-Alvarez, L., Fiorentino, G., Limauro, D., Peng, X., & Contursi, P. (2022). A comparative analysis of Weizmannia coagulans genomes unravels the genetic potential for biotechnological applications. International Journal of Molecular Sciences, 23, 3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, R., Chikindas, M., & Dicks, L. (2005). Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. International Journal of Food Microbiology, 101, 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu, L., Aomari, H., Groleau, D., & Subirade, M. (2006). An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilactici. Biotechnology and Applied Biochemistry, 43, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Bennallack, P. R., & Griffitts, J. S. (2017). Elucidating and engineering thiopeptide biosynthesis. World Journal of Microbiology and Biotechnology, 33, 119.

    Article  PubMed  Google Scholar 

  • Bertrand, N., Fliss, I., & Lacroix, C. (2001). High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. International Dairy Journal, 11, 953–960.

    Article  CAS  Google Scholar 

  • Castellone, V., Bancalari, E., Rubert, J., Gatti, M., Neviani, E., & Bottari, B. (2021). Eating fermented: Health benefits of LAB-fermented foods. Food, 10, 2639.

    Article  CAS  Google Scholar 

  • Castro-Muñoz, R., Correa-Delgado, M., CĂłrdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370, 130991.

    Article  PubMed  Google Scholar 

  • Cheigh, C.-I., Kook, M.-C., Kim, S.-B., Hong, Y.-H., & Pyun, Y.-R. (2004). Simple one-step purification of nisin Z from unclarified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnology Letters, 26, 1341–1345.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Pang, H., Wang, L., Ma, C., Wu, G., Liu, Y., Guan, Y., Zhang, M., Qin, G., & Tan, Z. (2022). Bacteriocin-producing lactic acid bacteria strains with antimicrobial activity screened from Bamei pig feces. Food, 11, 709.

    Article  CAS  Google Scholar 

  • Cho, H.-Y., Yousef, A., & Yang, S.-T. (1996). Continuous production of pediocin by immobilized Pediococcus acidilactici PO2 in a packed-bed bioreactor. Applied Microbiology and Biotechnology, 45, 589–594.

    Article  CAS  Google Scholar 

  • Chumchalova, J., Stiles, J., Josephsen, J., & Plockova, M. (2004). Characterization and purification of acidocin CH5, a bacteriocin produced by lactobacillus acidophilus CH5. Journal of Applied Microbiology, 96, 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  • CichoĹ„ska, P., & Ziarno, M. (2022). Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms, 10, 91.

    Article  Google Scholar 

  • Cladera-Olivera, F., Caron, G., & Brandelli, A. (2004). Bacteriocin production by bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21, 53–58.

    Article  CAS  Google Scholar 

  • Da Costa, R. J., Voloski, F. L., Mondadori, R. G., Duval, E. H., & Fiorentini, Ă‚. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 1–12.

    Article  Google Scholar 

  • Daba, H., Lacroix, C., Huang, J., & Simard, R. E. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 39, 166–173.

    Article  CAS  Google Scholar 

  • Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36, e24093.

    Article  CAS  PubMed  Google Scholar 

  • Dasa, F., Bejo, W., & Abdo, T. (2022). Importance and toxicity of biogenic amines in fresh and processed foods. Journal of Food Technology & Nutrition Sciences, 147(4), 24–26. https://doi.org/10.47363/JFTNS/2022

    Article  Google Scholar 

  • De Carvalho, K. G., Bambirra, F. H., Kruger, M. F., Barbosa, M. S., Oliveira, J. S., Santos, A. M., Nicoli, J. R., Bemquerer, M. P., De Miranda, A., & Salvucci, E. J. (2010). Antimicrobial compounds produced by lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. Journal of Industrial Microbiology and Biotechnology, 37, 381–390.

    Article  CAS  PubMed  Google Scholar 

  • De Freire Bastos, M. D. C., Miceli De Farias, F., Carlin Fagundes, P., & Varella Coelho, M. L. (2020). Staphylococcins: An update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Applied Microbiology and Biotechnology, 104, 10339–10368.

    Article  PubMed  Google Scholar 

  • Desjardins, P., Meghrous, J., & Lacroix, C. (2001). Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. International Dairy Journal, 11, 943–951.

    Article  CAS  Google Scholar 

  • Drummond, M. L., Henry, A., Li, H., & Williams, C. I. (2020). Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. Journal of Chemical Information and Modeling, 60, 5234–5254.

    Article  CAS  PubMed  Google Scholar 

  • Egan, K., Ross, R. P., & Hill, C. (2017). Bacteriocins: Antibiotics in the age of the microbiome. Emerging Topics in Life Sciences, 1, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Sánchez, M., Carrasco-Navarro, U., Juárez-Castelán, C., Lozano-Aguirre Beltrán, L., PĂ©rez-Chabela, M. L., & Ponce-Alquicira, E. (2023). Probiotic properties and proteomic analysis of Pediococcus pentosaceus 1101. Food, 12, 46.

    Article  Google Scholar 

  • Etivier, A., Boyaval, P., Duffes, F., Dousset, X., Compoint, J. P., & Marion, D. (2000). Triton X-114 phase partitioning for the isolation of a pediocin-like bacteriocin from Carnobacterium divergens. Letters in Applied Microbiology, 30, 42–46.

    Article  Google Scholar 

  • Farooq, S., Dar, A. H., Dash, K. K., Srivastava, S., Pandey, V. K., Ayoub, W. S., Pandiselvam, R., Manzoor, S., & Kaur, M. (2023). Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Science and Biotechnology, 32, 1–18.

    Article  Google Scholar 

  • Fimland, G., Sletten, K., & Nissen-Meyer, J. (2002). The complete amino acid sequence of the pediocin-like antimicrobial peptide leucocin C. Biochemical and Biophysical Research Communications, 295, 826–827.

    Article  CAS  PubMed  Google Scholar 

  • Flor Duro, A. (2021). Characterization of genes and functions required by multidrug-resistant enterococci to colonize the intestine. Universitat Politècnica de València.

    Book  Google Scholar 

  • Flynn, J., Ryan, A., & Hudson, S. P. (2021). Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. European Journal of Pharmaceutics and Biopharmaceutics, 165, 149–163.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, P., Martuzzi, F., Formaggioni, P., Malacarne, M., & Summer, A. (2023). Seasonal variations of the protein fractions and the mineral contents of the cheese whey in the parmigiano reggiano cheese manufacture. Agriculture, 13, 165.

    Article  CAS  Google Scholar 

  • Garcia-Gutierrez, E., O’connor, P. M., Colquhoun, I. J., Vior, N. M., RodrĂ­guez, J. M., Mayer, M. J., Cotter, P. D., & Narbad, A. (2020). Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by lactobacillus gasseri LM19, a strain isolated from human milk. Applied Microbiology and Biotechnology, 104, 3869–3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg, S., Rumjit, N. P., Thomas, P., Lai, C. W., & George, P. (2020). Green technologies for the treatment and utilisation of dairy product wastes. In Sustainable green chemical processes and their allied applications (pp. 311–338). Springer.

    Chapter  Google Scholar 

  • Garner, C. (2022). The effects of quorum sensing molecules on Streptococcus mutans biofilm. University of Westminster.

    Google Scholar 

  • Garvey, M., & Rowan, N. (2019). Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Current Opinion in Food Science, 26, 65–70.

    Article  Google Scholar 

  • Ge, J., Kang, J., & **, W. (2019). Effect of acetic acid on bacteriocin production by gram-positive. Journal of Microbiology and Biotechnology, 29(9), 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  • Georgalaki, M. D., Van Den Berghe, E., Kritikos, D., Devreese, B., Van Beeumen, J., Kalantzopoulos, G., De Vuyst, L., & Tsakalidou, E. (2002). Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Applied and Environmental Microbiology, 68, 5891–5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghrairi, T., Frere, J., Berjeaud, J., & Manai, M. (2008). Purification and characterisation of bacteriocins produced by enterococcus faecium from Tunisian rigouta cheese. Food Control, 19, 162–169.

    Article  CAS  Google Scholar 

  • Giannakourou, M. C., & Tsironi, T. N. (2021). Application of processing and packaging hurdles for fresh-cut fruits and vegetables preservation. Food, 10, 830.

    Article  CAS  Google Scholar 

  • Goulding, D., Fox, P., & O’mahony, J. (2020). Milk proteins: An overview. In Milk proteins (pp. 21–98). Academic.

    Chapter  Google Scholar 

  • Goulhen, F., Meghrous, J., & Lacroix, C. (1999). Production of a nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. Journal of Applied Microbiology, 86, 399–406.

    Article  CAS  Google Scholar 

  • Goyal, R. K., Schmidt, M. A., & Hynes, M. F. (2021). Molecular biology in the improvement of biological nitrogen fixation by rhizobia and extending the scope to cereals. Microorganisms, 9, 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra, N., & Pastrana, L. (2003). Influence of pH drop on both nisin and pediocin production by Lactococcus lactis and Pediococcus acidilactici. Letters in Applied Microbiology, 37, 51–55.

    Article  CAS  PubMed  Google Scholar 

  • Guyonnet, D., Fremaux, C., Cenatiempo, Y., & Berjeaud, J. (2000). Method for rapid purification of class IIa bacteriocins and comparison of their activities. Applied and Environmental Microbiology, 66, 1744–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haahtela, T. (2019). A biodiversity hypothesis. Allergy, 74, 1445–1456.

    Article  PubMed  Google Scholar 

  • Halami, P. M., & Chandrashekar, A. (2005). Enhanced production of pediocin C20 by a native strain of Pediococcus acidilactici C20 in an optimized food-grade medium. Process Biochemistry, 40, 1835–1840.

    Article  CAS  Google Scholar 

  • Harwood, C. R., & Kikuchi, Y. (2022). The ins and outs of bacillus proteases: Activities, functions and commercial significance. FEMS Microbiology Reviews, 46, fuab046.

    Article  CAS  PubMed  Google Scholar 

  • Holck, A., Axelsson, L., Birkeland, S.-E., Aukrust, T., & Blom, H. (1992). Purification and amino acid sequence of sakacin A, a bacteriocin from lactobacillus sake Lb706. Microbiology, 138, 2715–2720.

    CAS  Google Scholar 

  • Hussein, A. R. (2022). Foods bio-preservation: A review. International Journal for Research in Applied Sciences and Biotechnology, 9, 212–217.

    Google Scholar 

  • Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., Esatbeyoglu, T., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Food, 10, 3131.

    Article  CAS  Google Scholar 

  • Iqra, S. K., Ali, A., Afzal, F., Yousaf, M. J., Khalid, W., Faizul Rasul, H., Aziz, Z., Aqlan, F. M., & Al-Farga, A. (2023). Wheat-based gluten and its association with pathogenesis of celiac disease: A review. International Journal of Food Properties, 26, 511–525.

    Article  Google Scholar 

  • Jaumaux, F. P., GĂłmez De Cadiñanos, L., & Gabant, P. (2020). In the age of synthetic biology, will antimicrobial peptides be the next generation of antibiotics? Antibiotics, 9, 484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jitpakdee, J., Kantachote, D., Kanzaki, H., & Nitoda, T. (2022). Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT, 160, 113269.

    Article  CAS  Google Scholar 

  • Juliano, P., & Reyes-De-Corcuera, J. I. (2022). Food engineering innovations across the food supply chain: Debrief and learnings from the ICEF13 congress and the future of food engineering. In Food engineering innovations across the food supply chain (pp. 431–476). Elsevier.

    Chapter  Google Scholar 

  • Kountoupis, T. C. (2019). Identification and expression of the holin gene in shiga-toxigenic Escherichia coli specific bacteriophages and the use of bacteriophage depolymerase on Stec biofilms formed on food contact surfaces. Oklahoma State University.

    Google Scholar 

  • Lieke, T., Meinelt, T., Hoseinifar, S. H., Pan, B., Straus, D. L., & Steinberg, C. E. (2020). Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12, 943–965.

    Article  Google Scholar 

  • Lim, H. R., Khoo, K. S., Chew, K. W., Chang, C.-K., Munawaroh, H. S. H., Kumar, P. S., Huy, N. D., & Show, P. L. (2021). Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution, 284, 117492.

    Article  CAS  PubMed  Google Scholar 

  • Line, J., Svetoch, E., Eruslanov, B., Perelygin, V., Mitsevich, E., Mitsevich, I., Levchuk, V., Svetoch, O., Seal, B., & Siragusa, G. (2008). Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 52, 1094–1100.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Chung, Y.-K., Yang, S.-T., & Yousef, A. E. (2005). Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochemistry, 40, 13–24.

    Article  CAS  Google Scholar 

  • LĂłpez, R. L., GarcĂ­a, M. T., Abriouel, H., Omar, N. B., Grande, M. J., MartĂ­nez-Cañamero, M., & Gálvez, A. (2007). Semi-preparative scale purification of enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production. Journal of Industrial Microbiology and Biotechnology, 34, 779–785.

    Article  PubMed  Google Scholar 

  • Lozano, J. C. N., Meyer, J. N., Sletten, K., Peláz, C., & Nes, I. F. (1992). Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. Journal of General Microbiology, 138, 1985–1990.

    Article  Google Scholar 

  • Luo, J., Liu, S., Lu, H., Chen, Q., & Shi, Y. (2022). A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5272–5290.

    Article  CAS  PubMed  Google Scholar 

  • Lustig, R. H. (2020). Ultraprocessed food: Addictive, toxic, and ready for regulation. Nutrients, 12, 3401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, X., Du, J., Jie, Y., Zhang, B., Bai, F., Zhao, H., & Li, J. (2017). Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus. World Journal of Microbiology and Biotechnology, 33, 1–12.

    Article  CAS  Google Scholar 

  • Ma, Y., Guo, Z., **a, B., Zhang, Y., Liu, X., Yu, Y., Tang, N., Tong, X., Wang, M., & Ye, X. (2022). Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology, 40, 921–931.

    Article  CAS  PubMed  Google Scholar 

  • Manoharan, M., & Balasubramaniam, T. S. (2022). An extensive review on production, purification, and bioactive application of different classes of bacteriocin. Journal of Tropical Biodiversity and Biotechnology, 7, 72735.

    Article  Google Scholar 

  • Maviza, T. P., Zarechenskaia, A. S., Burmistrova, N. R., Tchoub, A. S., Dontsova, O. A., Sergiev, P. V., & Osterman, I. A. (2022). RtcB2-PrfH operon protects E. coli ATCC25922 strain from colicin E3 toxin. International Journal of Molecular Sciences, 23, 6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor, M. F., Ahmad, N., Aadil, R. M., Rahaman, A., Ahmed, Z., Rehman, A., et al. (2019). Impact of pulsed electric field on rheological, structural, and physicochemical properties of almond milk. Journal of Food Process Engineering, 42(8), e13299.

    Article  Google Scholar 

  • Manzoor, M. F., Hussain, A., Sameen, A., Sahar, A., Khan, S., Siddique, R., et al. (2021). Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. Ultrasonics Sonochemistry, 78, 105686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehany, T., Siddiqui, S. A., Olawoye, B., Olabisi Popoola, O., Hassoun, A., Manzoor, M. F., & Punia Bangar, S. (2023). Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Critical Reviews in Food Science and Nutrition, 1–31.

    Google Scholar 

  • Mohamed, B. A., Fattah, I. R., Yousaf, B., & Periyasamy, S. (2022). Effects of the COVID-19 pandemic on the environment, waste management, and energy sectors: A deeper look into the long-term impacts. Environmental Science and Pollution Research, 29, 46438–46457.

    Article  CAS  PubMed  Google Scholar 

  • Monika, K., Malik, T., Gehlot, R., Rekha, K., Kumari, A., Sindhu, R., & Rohilla, P. (2021). Antimicrobial property of probiotics. Environment Conservation Journal, 22, 33–48.

    Article  Google Scholar 

  • Monteiro, R., Pires, D. P., Costa, A. R., & Azeredo, J. (2019). Phage therapy: Going temperate? Trends in Microbiology, 27, 368–378.

    Article  CAS  PubMed  Google Scholar 

  • Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., Schroedter, L., Olszewska-Widdrat, A., & LĂłpez-GĂłmez, J. P. (2020). Multi-product lactic acid bacteria fermentations: A review. Fermentation, 6, 23.

    Article  CAS  Google Scholar 

  • Motta, J.-P., Wallace, J. L., Buret, A. G., Deraison, C., & Vergnolle, N. (2021). Gastrointestinal biofilms in health and disease. Nature Reviews Gastroenterology & Hepatology, 18, 314–334.

    Article  Google Scholar 

  • Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of bacillus licheniformis. Critical Reviews in Biotechnology, 41, 609–627.

    Article  CAS  PubMed  Google Scholar 

  • Naskar, A., & Kim, K.-S. (2021). Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics, 13, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari, M., & Smith, D. L. (2020). A PGPR-produced bacteriocin for sustainable agriculture: A review of thuricin 17 characteristics and applications. Frontiers in Plant Science, 11, 916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisa, M., Dar, R. A., Fomda, B. A., & Nazir, R. (2023). Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control, 149, 109710.

    Article  CAS  Google Scholar 

  • Ongey, E. L., Yassi, H., Pflugmacher, S., & Neubauer, P. (2017). Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnology Letters, 39, 473–482.

    Article  PubMed  Google Scholar 

  • Owusu-Kwarteng, J., Tano-Debrah, K., Akabanda, F., Nielsen, D. S., & Jespersen, L. (2013). Partial characterization of bacteriocins produced by lactobacillus reuteri 2-20B and Pediococcus acidilactici 0-11A isolated from fura, a millet-based fermented food in Ghana. Journal of Food Research, 2, 50.

    Article  CAS  Google Scholar 

  • Padhi, S., Sharma, S., Sahoo, D., Montet, D., & Rai, A. K. (2022). Potential of lactic acid bacteria as starter cultures for food fermentation and as producers of biochemicals for value addition. In Lactic acid bacteria in food biotechnology (pp. 281–304). Elsevier.

    Chapter  Google Scholar 

  • Pang, X., Song, X., Chen, M., Tian, S., Lu, Z., Sun, J., Li, X., Lu, Y., & Yuk, H. G. (2022). Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Comprehensive Reviews in Food Science and Food Safety, 21, 1657–1676.

    Article  CAS  PubMed  Google Scholar 

  • Parlindungan, E., Dekiwadia, C., & Jones, O. A. (2021). Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107, 18–26.

    Article  CAS  Google Scholar 

  • Peng, S., Song, J., Zeng, W., Wang, H., Zhang, Y., **n, J., & Suo, H. (2021). A broad-spectrum novel bacteriocin produced by lactobacillus plantarum SHY 21–2 from yak yogurt: Purification, antimicrobial characteristics and antibacterial mechanism. LWT, 142, 110955.

    Article  CAS  Google Scholar 

  • Peydayesh, M., Bagnani, M., Soon, W. L., & Mezzenga, R. (2022). Turning food protein waste into sustainable technologies. Chemical Reviews, 123(5), 2112–2154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Food, 10, 1067.

    Article  CAS  Google Scholar 

  • Pirtskhalava, M., Vishnepolsky, B., Grigolava, M., & Managadze, G. (2021). Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals, 14, 471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poonia, A., & Pandey, S. (2023). Production of microbial pigments from whey and their applications: A review. Nutrition & Food Science, 53(2), 265–284. https://doi.org/10.1108/NFS-02-2022-0055

    Article  Google Scholar 

  • Pujato, S. A., Quiberoni, A. D. L., & Guglielmotti, D. M. (2022). Characterization of bacteriocins produced by lactic acid bacteria of industrial interest. In Biomolecules from Natural Sources: Advances and Applications (pp. 458–469). Wiley.

    Chapter  Google Scholar 

  • Quintela-Baluja, M., Jobling, K., Graham, D. W., Tabraiz, S., Shamurad, B., Alnakip, M., Böhme, K., Barros-Velázquez, J., Carrera, M., & Calo-Mata, P. (2022). Rapid proteomic characterization of bacteriocin-producing enterococcus faecium strains from foodstuffs. International Journal of Molecular Sciences, 23, 13830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, D., Kumar, V., & Saran, S. (2022). A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere, 294, 133712.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, K. V. (2019). Food microbiology. MJP Publisher.

    Google Scholar 

  • Rasool, I. F. U., Aziz, A., Khalid, W., Koraqi, H., Siddiqui, S. A., Al-Farga, A., Lai, W.-F., & Ali, A. (2023). Industrial application and health prospective of fig (Ficus carica) by-products. Molecules, 28, 960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, B., & Hoover, D. G. (1993). Pediocins. In Bacteriocins of lactic acid bacteria (pp. 181–210). Elsevier.

    Chapter  Google Scholar 

  • Rebuffat, S. (2016). Microcins and other bacteriocins: Bridging the gaps between killing stategies, ecology and applications. Caister Academic Press.

    Google Scholar 

  • Riabinin, G., Abd El-Aty, A., Blumberga, D., & Baranenko, D. (2020). Alternative “green” antimicrobial agents obtained by selective sorption from culture. Environmental and Climate Technologies, 24, 740–754.

    Article  Google Scholar 

  • Rocha, J. M., & Guerra, A. (2020). On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. European Food Research and Technology, 246, 2161–2174.

    Article  CAS  Google Scholar 

  • RodrĂ­guez, L. G. R., Gasga, V. M. Z., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., & Burgos, J.a.S. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854.

    Article  Google Scholar 

  • Sabo, S. S., Converti, A., Ichiwaki, S., & Oliveira, R. P. (2019). Bacteriocin production by lactobacillus plantarum ST16Pa in supplemented whey powder formulations. Journal of Dairy Science, 102, 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Hubert, C., Durieux, A., Bodo, E., & Simon, J.-P. (2009). Large scale purification protocol for carnocin KZ 213 from Carnobacterium piscicola. Biotechnology Letters, 31, 519–523.

    Article  CAS  PubMed  Google Scholar 

  • Sakr, E. A., Massoud, M. I., & Ragaee, S. (2021). Food wastes as natural sources of lactic acid bacterial exopolysaccharides for the functional food industry: A review. International Journal of Biological Macromolecules, 189, 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Scholz, R., Vater, J., Budiharjo, A., Wang, Z., He, Y., Dietel, K., Schwecke, T., Herfort, S., Lasch, P., & Borriss, R. (2014). Amylocyclicin, a novel circular bacteriocin produced by bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 196, 1842–1852.

    Article  PubMed  PubMed Central  Google Scholar 

  • Settier-RamĂ­rez, L., LĂłpez-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2020). PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. International Journal of Food Microbiology, 322, 108545.

    Article  PubMed  Google Scholar 

  • Shafique, B., Ranjha, M. M. A. N., Murtaza, M. A., Walayat, N., Nawaz, A., Khalid, W., Mahmood, S., Nadeem, M., Manzoor, M. F., & Ameer, K. (2022). Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms, 11, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8, 639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A. K., Ramakanth, D., Kumar, A., Lee, Y. S., & Gaikwad, K. K. (2021). Active packaging technologies for clean label food products: a review. Journal of Food Measurement and Characterization, 15, 4314–4324.

    Article  Google Scholar 

  • Ĺ išková, A. O., Andicsová, A. E., Duale, K., Zawidlak-WÄ™grzyĹ„ska, B., & Rydz, J. (2023). Antimicrobial and drug delivery aspect of environment-friendly polymer nanocomposites. In Nanocomposites-advanced materials for energy and environmental aspects (pp. 383–447). Elsevier.

    Chapter  Google Scholar 

  • Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., BĂ©dard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews, 45, fuaa039.

    Article  PubMed  Google Scholar 

  • Soltani, S., Zirah, S., Rebuffat, S., Couture, F., Boutin, Y., Biron, E., Subirade, M., & Fliss, I. (2022). Gastrointestinal stability and cytotoxicity of bacteriocins from gram-positive and gram-negative bacteria: A comparative in vitro study. Frontiers in Microbiology, 12, 4250.

    Article  Google Scholar 

  • Strack, L., Carli, R. C., Da Silva, R. V., Sartor, K. B., Colla, L. M., & Reinehr, C. O. (2020). Food biopreservation using antimicrobials produced by lactic acid bacteria. Research, Society and Development, 9, e998986666.

    Article  Google Scholar 

  • Strafella, S., Simpson, D. J., Yaghoubi Khanghahi, M., De Angelis, M., Gänzle, M., Minervini, F., & Crecchio, C. (2020). Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms, 9, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumon, A. H., Islam, F., Mohanto, N. C., Kathak, R. R., Molla, N. H., Rana, S., Degen, G. H., & Ali, N. (2021). The presence of Aflatoxin M1 in milk and milk products in Bangladesh. Toxins, 13, 440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telhig, S., Ben Said, L., Zirah, S., Fliss, I., & Rebuffat, S. (2020). Bacteriocins to thwart bacterial resistance in gram negative bacteria. Frontiers in Microbiology, 11, 586433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tintor, N., Paauw, M., Rep, M., & Takken, F. L. (2020). The root-invading pathogen fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. New Phytologist, 227, 1479–1492.

    Article  CAS  PubMed  Google Scholar 

  • Todorov, S., De Melo Franco, B., & Tagg, J. (2019). Bacteriocins of gram-positive bacteria having activity spectra extending beyond closely-related species. Beneficial Microbes, 10, 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Todorov, S., Onno, B., Sorokine, O., Chobert, J., Ivanova, I., & Dousset, X. (1999). Detection and characterization of a novel antibacterial substance produced by lactobacillus plantarum ST 31 isolated from sourdough. International Journal of Food Microbiology, 48, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Uteng, M., Hauge, H. H., Brondz, I., Nissen-Meyer, J., & Fimland, G. (2002). Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Applied and Environmental Microbiology, 68, 952–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., Patel, A. R., Shah, N., Utama, G. L., & Niamah, A. K. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594.

    Article  CAS  Google Scholar 

  • Vidovic, S., Paturi, G., Gupta, S., & Fletcher, G. C. (2022). Lifestyle of listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Critical Reviews in Food Science and Nutrition, 5, 1–19.

    Article  Google Scholar 

  • Walsh, L., Johnson, C. N., Hill, C., & Ross, R. P. (2021). Efficacy of phage-and bacteriocin-based therapies in combatting nosocomial MRSA infections. Frontiers in Molecular Biosciences, 8, 654038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Xu, H., Liu, S., Song, B., Liu, H., Li, F., Deng, S., Wang, G., Zeng, H., & Zeng, X. (2021). Toyoncin, a novel leaderless bacteriocin that is produced by bacillus toyonensis XIN-YC13 and specifically targets B. cereus and listeria monocytogenes. Applied and Environmental Microbiology, 87, e00185–e00121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencewicz, T. A., & Miller, M. J. (2018). Sideromycins as pathogen-targeted antibiotics. Antibacterials, II, 151–183.

    Google Scholar 

  • Wiebach, V., Mainz, A., Siegert, M.-a. J., Jungmann, N. A., Lesquame, G., Tirat, S., Dreux-Zigha, A., Aszodi, J., Le Beller, D., & SĂĽssmuth, R. D. (2018). The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nature Chemical Biology, 14, 652–654.

    Article  CAS  PubMed  Google Scholar 

  • Yap, P. G., Lai, Z. W., & Tan, J. S. (2022). Bacteriocins from lactic acid bacteria: Purification strategies and applications in food and medical industries: A review. Beni-Suef University Journal of Basic and Applied Sciences, 11, 1–18.

    Article  Google Scholar 

  • Yin, J., Zheng, W., Gao, Y., Jiang, C., Shi, H., Diao, X., Li, S., Chen, H., Wang, H., & Li, R. (2019). Single-stranded DNA-binding protein and exogenous RecBCD inhibitors enhance phage-derived homologous recombination in pseudomonas. Iscience, 14, 1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuvaraj, D., Iyyappan, J., Gnanasekaran, R., Ishwarya, G., Harshini, R., Dhithya, V., Chandran, M., Kanishka, V., & Gomathi, K. (2021). Advances in bio food packaging–An overview. Heliyon, 7, e07998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandona, E., BlaĹľić, M., & ReĹľek Jambrak, A. (2021). Whey utilization: Sustainable uses and environmental approach. Food Technology and Biotechnology, 59, 147–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZapaĹ›nik, A., SokoĹ‚owska, B., & BryĹ‚a, M. (2022). Role of lactic acid bacteria in food preservation and safety. Food, 11, 1283.

    Article  Google Scholar 

  • Zhang, K., Teng, D., Mao, R., Yang, N., Hao, Y., & Wang, J. (2023). Thinking on the construction of antimicrobial peptide databases: Powerful tools for the molecular design and screening. International Journal of Molecular Sciences, 24, 3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Zhang, B., Liang, W., Liu, X., Zheng, J., Ge, X., Shen, H., Lu, Y., Zhang, X., & Sun, Z. (2022). Lutein encapsulated in whey protein and citric acid potato starch ester: Construction and characterization of microcapsules. International Journal of Biological Macromolecules, 220, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9, 553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, J., Jiang, H., Cheng, H., Fang, J., & Huang, G. (2018). Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules, 117, 781–789.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support of Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China (Project ID:2022B1212010015).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, A. et al. (2023). Bacteriocins Production Using Whey. In: Poonia, A., Trajkovska Petkoska, A. (eds) Whey Valorization. Springer, Singapore. https://doi.org/10.1007/978-981-99-5459-9_13

Download citation

Publish with us

Policies and ethics

Navigation