Introduction to Green Nanoemulsions and Their Properties

  • Chapter
  • First Online:
Current Trends in Green Nano-emulsions

Abstract

The creation of effective and novel organic, nontoxic, and eco-friendly supplements is currently gaining popularity. The need for further greener products will increase exponentially over time. Healthy, green, and sustainable colloidal systems that satisfy these requirements and standards include green nanoemulsions. As the name implies, green nanoemulsions are nano-sized emulsions that are safer, more functionally effective, and kinetically stable than standard emulsions. Oil and water are often distributed into one another to form nanoemulsions, with one of the components acting as a medium (continuous or external phase). The other, however, is suspended within the medium (discontinuous or internal phase). The synthesis of biological nanoemulsion is called ‘Green Chemistry’, as it is the more advanced field in science and technology for enhancing biomedicine and plant based or agricultural studies. The size of nanoparticles in the nanoemulsions are extremely small that ranges between 1 and 100 nm. Phase inversion, micro fluidization, solvent dispersion etc. are some of the method for the production of nanoemulsions. Different microscopy and electronic instruments are used for the characterization of nanoemulsions like zeta potential, transmission electron microscopy etc. The usage of emulsion are in cosmetics, lubricants, nano-medicine, pain, catalyst and many more. The recent advancements in science have come up with many new branches and catapulted the existing fields to new heights and one such field is nanotechnology that has led to advancements in many areas. Hence, the purpose of this chapter is based on the different methods for the production of nanoemulsions with their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion–a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163. https://doi.org/10.1002/PS.2233

    Article  CAS  PubMed  Google Scholar 

  2. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377(1–2):142–147. https://doi.org/10.1016/J.IJPHARM.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  3. Aref SP, Valizadegan O, Farashiani ME (2015) Eucalyptus dundasii Maiden essential oil, chemical composition and insecticidal values against Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). J Plant Protect Res 55(1):35–41. https://doi.org/10.1515/JPPR-2015-0005

  4. Aveyard R (1988) Emulsions and solubilization. In: Shinoda K, Friberg S (ed) Wiley-interscience, New York, 1986. pp. xiii + 174, price £43.25. J Chem Technol Biotechnol 42(3):243–244. https://doi.org/10.1002/JCTB.280420311

  5. Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: Invisible nanofactories. J Pharm Res 6(3):383–388. https://doi.org/10.1016/J.JOPR.2013.03.001

    Article  CAS  Google Scholar 

  6. Bachheti RK, Abate L, Deepti, Bachheti A, Madhusudhan A, Husen H (2021) Algae-, fungi-, and yeast-mediated biological synthesis of nanoparticles and their various biomedical applications. In: Kharisov B, Kharissova O (eds) Handbook of greener synthesis of nanomaterials and compounds, vol 1: fundamental principles and methods. Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA, pp 701–734

    Google Scholar 

  7. Chaw Jiang L, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pesticide Biochem Physiol 102(1):19–29. https://doi.org/10.1016/J.PESTBP.2011.10.004

  8. Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today 16(7–8):354–360. https://doi.org/10.1016/J.DRUDIS.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Choupanian M, Omar D, Basri M, Asib N (2017) Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. J Pestic Sci 42(4):158. https://doi.org/10.1584/JPESTICS.D17-032

    Article  CAS  Google Scholar 

  10. Da Botas GS, Cruz RAS, De Almeida FB, Duarte JL, Araújo RS, Souto RNP, Ferreira R, Carvalho JCT, Santos MG, Rocha L, Pereira VLP, Fernandes CP (2017) Baccharis reticularia DC. and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 22(11):1990. https://doi.org/10.3390/MOLECULES22111990

  11. Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27(5):1683–1692. https://doi.org/10.1021/LA104221Q/SUPPL_FILE/LA104221Q_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  12. Donsì F, Sessa M, Ferrari G (2011) Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Ind Eng Chem Res 51(22):7606–7618. https://doi.org/10.1021/IE2017898

    Article  Google Scholar 

  13. Du Z, Wang C, Tai X, Wang G, Liu X (2016) Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustain Chem Eng 4(3):983–991. https://doi.org/10.1021/ACSSUSCHEMENG.5B01058/ASSET/IMAGES/MEDIUM/SC-2015-01058V_0010.GIF

    Article  CAS  Google Scholar 

  14. Duarte JL, Amado JRR, Oliveira AEMFM, Cruz RAS, Ferreira AM, Souto RNP, Falcão DQ, Carvalho JCT, Fernandesa CP (2015) Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras 25(2):189–192. https://doi.org/10.1016/J.BJP.2015.02.010

    Article  CAS  Google Scholar 

  15. Feng J, Esquena J, Rodriguez-Abreu C, Solans C (2020) Key features of nano-emulsion formation by the phase inversion temperature (PIT) method

    Google Scholar 

  16. Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JCT, Tietbohl LAC, Rocha L, Falcão DQ (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnol 12(1):1–9. https://doi.org/10.1186/1477-3155-12-22/TABLES/2

    Article  Google Scholar 

  17. Grumbach C, Krüger V, Czermak P (2022) A new control strategy for high-pressure homogenization to improve the safety of injectable lipid emulsions. Pharmaceutics 14(8). https://doi.org/10.3390/pharmaceutics14081603

  18. Gupta A (2019) Nanoemulsions. In: Nanoparticles for biomedical applications: fundamental concepts, biological interactions and clinical applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816662-8.00021-7

  19. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter 12(5):1452–1458. https://doi.org/10.1039/C5SM02051D

    Article  CAS  PubMed  Google Scholar 

  20. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841. https://doi.org/10.1039/C5SM02958A

    Article  CAS  PubMed  Google Scholar 

  21. Gupta A, Narsimhan V, Hatton TA, Doyle PS (2016) Kinetics of the change in droplet size during nanoemulsion formation. Langmuir: ACS J Surfaces Colloids 32(44):11551–11559. https://doi.org/10.1021/ACS.LANGMUIR.6B01862

    Article  CAS  Google Scholar 

  22. Håkansson A, Innings F, Trägårdh C, Bergenståhl B (2013) A high-pressure homogenization emulsification model-improved emulsifier transport and hydrodynamic coupling. Chem Eng Sci 91:44–53. https://doi.org/10.1016/J.CES.2013.01.011

    Article  Google Scholar 

  23. Håkansson A, Trägårdh C, Bergenståhl B (2009) Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem Eng Sci 64(12):2915–2925. https://doi.org/10.1016/J.CES.2009.03.034

    Article  Google Scholar 

  24. Handa M, Ujjwal RR, Vasdev N, Flora SJS, Shukla R (2021) Optimization of surfactant- and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity. ACS Omega 6(1):559–568. https://doi.org/10.1021/ACSOMEGA.0C05033/ASSET/IMAGES/MEDIUM/AO0C05033_M001.GIF

    Article  CAS  PubMed  Google Scholar 

  25. Hazrati H, Saharkhiz MJ, Niakousari M, Moein M (2017) Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf 142:423–430. https://doi.org/10.1016/J.ECOENV.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  26. Helgeson ME, Moran SE, An HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11(4):344–352. https://doi.org/10.1038/NMAT3248

    Article  CAS  PubMed  Google Scholar 

  27. Hidajat MJ, Jo W, Kim H, Noh J (2020) Effective droplet size reduction and excellent stability of limonene nanoemulsion formed by high-pressure homogenizer. Colloids Interfaces 4(1):5. https://doi.org/10.3390/COLLOIDS4010005

  28. Husen A (2019) Natural product-based fabrication of zinc oxide nanoparticles and their application. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, pp 193–291. https://doi.org/10.1007/978-3-030-05569-1_7

  29. Husen A (2019) Medicinal plant-product based fabrication nanoparticles (Au and Ag) and their anticancer effect. In: Kintzios SE, Barberaki M, Flampouri (eds) Plants that fight cancer, 2nd edn. Taylor & Francis/CRC Press pp 133–147

    Google Scholar 

  30. Husen A (2023) Secondary metabolites based green synthesis of nanomaterials and their applications. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  31. Husen A (2023) Nanomaterials from agricultural and horticultural products. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  32. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  33. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650. https://doi.org/10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  34. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. Biotech 5(2):123. https://doi.org/10.1007/S13205-014-0214-0

  35. Jesus FLM, De Almeida FB, Duarte JL, Oliveira AEMFM, Cruz RAS, Souto RNP, Ferreira RMA, Kelmann RG, Carvalho JCT, Lira-Guedes AC, Guedes M, Solans C, Fernandes CP (2017) Preparation of a nanoemulsion with Carapa guianensis Aublet (Meliaceae) oil by a low-energy/solvent-free method and evaluation of its preliminary residual larvicidal activity. Evidence-Based Complementary Alternative Med. https://doi.org/10.1155/2017/6756793

    Article  Google Scholar 

  36. **tapattanakit A (2018) Preparation of nanoemulsions by phase inversion temperature (PIT) method. Pharmaceutical Sci Asia 45(1):1–12. https://doi.org/10.29090/PSA.2018.01.001

  37. Kadziński M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2018) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res 264(2):472–490. https://doi.org/10.1016/J.EJOR.2016.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumar N, Verma A, Mandal A (2021) Formation, characteristics and oil industry applications of nanoemulsions: a review. J Petrol Sci Eng 206:109042. https://doi.org/10.1016/J.PETROL.2021.109042

    Article  CAS  Google Scholar 

  39. Kumari S, Kumaraswamy RV, Choudhary RC, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2018) Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-24871-5

  40. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106. https://doi.org/10.1016/J.JHAZMAT.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Kang W, Li Z, Yang H, Jia R, He Y, Kang X, Zheng Z, Wang Y, Sarsenbekuly B, Gabdullin M (2021) Stability of oil-in-water (O/W) nanoemulsions and its oil washing performance for enhanced oil recovery. Phys Fluids 33(7):072002. https://doi.org/10.1063/5.0058759

    Article  CAS  Google Scholar 

  42. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing cree** foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manage Sci 69(1):104–111. https://doi.org/10.1002/PS.3371

  43. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsk IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6(1):35. https://doi.org/10.32607/20758251-2014-6-1-35-44

  44. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 18(41):R635. https://doi.org/10.1088/0953-8984/18/41/R01

    Article  CAS  Google Scholar 

  45. McClements DJ (2002) Theoretical prediction of emulsion color. Adv Coll Interface Sci 97(1–3):63–89. https://doi.org/10.1016/S0001-8686(01)00047-1

    Article  CAS  Google Scholar 

  46. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8(6):1719–1729. https://doi.org/10.1039/C2SM06903B

    Article  CAS  Google Scholar 

  47. McClements DJ (2015) Food emulsions: principles, practices, and techniques, 3rd edn. Food Emulsions: Principles, Practices, and Techniques, Third Edition, pp 1–676. https://doi.org/10.1201/B18868/FOOD-EMULSIONS-DAVID-JULIAN-MCCLEMENTS

  48. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330. https://doi.org/10.1080/10408398.2011.559558

    Article  CAS  PubMed  Google Scholar 

  49. Mustafa IF, Hussein MZ (2020) Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10(8):1–26. https://doi.org/10.3390/NANO10081608

    Article  Google Scholar 

  50. Nawaz A, Latif MS, Alnuwaiser MA, Ullah S, Iqbal M, Alfatama M, Lim V (2022) Synthesis and characterization of chitosan-decorated nanoemulsion gel of 5-fluorouracil for topical delivery. Gels 8(7):1–13. https://doi.org/10.3390/gels8070412

    Article  CAS  Google Scholar 

  51. Nirmala MJ, Dhas SP, Saikrishna N, Raj US, Sai PS, Nagarajan R (2022) Green nanoemulsions: Components, formulation, techniques of characterization, and applications. Bio-Based Nanoemulsions Agri-Food Appl. https://doi.org/10.1016/B978-0-323-89846-1.00013-9

    Article  Google Scholar 

  52. Oliveira AEMFM, Duarte JL, Cruz RAS, Souto RNP, Ferreira RMA, Peniche T, Conceição EC, Oliveira LAR, Faustino SMM, Florentino AC, Carvalho JCT, Fernandes CP (2017) Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J Nanobiotechnol 15(1):1–11. https://doi.org/10.1186/S12951-016-0234-5/TABLES/4

    Article  Google Scholar 

  53. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm Official J Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik 66(2). https://doi.org/10.1016/J.EJPB.2006.10.014

  54. Saguy IS, Singh RP, Johnson T, Fryer PJ, Sastry SK (2013) Challenges facing food engineering. https://doi.org/10.1016/j.jfoodeng.2013.05.031

  55. Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2014) Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control Complete 37:292–297. https://doi.org/10.1016/J.FOODCONT.2013.09.015

  56. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(98):1–15

    Google Scholar 

  57. Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  58. Sh A, Abdelrazeik AB (2015) Nanoemulsion of jojoba oil, preparation, characterization and insecticidal activity against Sitophilus oryzae (Coleoptera: Curculionidae) on wheat. Int J Agric Innov Res 4(1):2319–1473

    Google Scholar 

  59. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M (2007) Formulation development and optimization using nanoemulsion technique: a technical note. AAPS Pharm Sci Tech 8(2):E12. https://doi.org/10.1208/PT0802028

    Article  Google Scholar 

  60. Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71. https://doi.org/10.5958/2320-642X.2015.00007.1

    Article  Google Scholar 

  61. Singh JS (2015) Microbes play major roles in the ecosystem services. Clim Change Environ Sustain 3(2):163. https://doi.org/10.5958/2320-642X.2015.00018.6

    Article  Google Scholar 

  62. Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agr Ecosyst Environ 203:80–82. https://doi.org/10.1016/J.AGEE.2015.01.026

    Article  Google Scholar 

  63. Singh JS (2015) Book review. Appl Soil Ecol 92:45–46. https://doi.org/10.1016/J.APSOIL.2015.03.004

    Article  Google Scholar 

  64. Singh JS, Abhilash PC, Gupta VK (2016) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34(10):773–775. https://doi.org/10.1016/j.tibtech.2016.06.002

    Article  CAS  Google Scholar 

  65. Singh R (2019) Microbial biotechnology: a promising implement for sustainable agriculture. https://doi.org/10.1016/B978-0-444-64191-5.00008-0

  66. Solans C, Morales D, Homs M (2016) Spontaneous emulsification. Curr Opin Colloid Interface Sci 22:88–93. https://doi.org/10.1016/J.COCIS.2016.03.002

    Article  CAS  Google Scholar 

  67. Solè I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir: ACS J Surf Colloids 22(20):8326–8332. https://doi.org/10.1021/LA0613676

    Article  Google Scholar 

  68. Subramanya S, Sumanth K, Gupta PK, Chayapathy V, Keshamma E, Murugan K (2022) Formulation of green nanoemulsions for controlling agriculture insects. Bio-Based Nanoemulsions Agri-Food Appl. https://doi.org/10.1016/B978-0-323-89846-1.00002-4

    Article  Google Scholar 

  69. Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104(3):393–402. https://doi.org/10.1017/S0007485313000710

    Article  CAS  PubMed  Google Scholar 

  70. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Coll Interface Sci 108–109:303–318. https://doi.org/10.1016/J.CIS.2003.10.023

    Article  Google Scholar 

  71. Tiwari SB, Amiji MM (2006) Nanoemulsion formulations for tumor-targeted delivery. Nanotechnol Cancer Therapy. https://doi.org/10.1201/9781420006636-35/NANOEMULSION-FORMULATIONS-TUMOR-TARGETED-DELIVERY-SANDIP-TIWARI-MANSOOR-AMIJI

    Article  Google Scholar 

  72. Topuz OK, Özvural EB, Zhao Q, Huang Q, Chikindas M, Gölükçü M (2016) Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem 203:117–123. https://doi.org/10.1016/J.FOODCHEM.2016.02.051

    Article  CAS  PubMed  Google Scholar 

  73. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2(5):837–846. https://doi.org/10.1039/C0SC00338G

    Article  CAS  Google Scholar 

  74. Wilking JN, Mason TG (2007) Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Phys Rev E Stat Nonlinear Soft Matter Phys 75(4):041407. https://doi.org/10.1103/PHYSREVE.75.041407/FIGURES/4/MEDIUM

    Article  Google Scholar 

  75. Wojciechowski K, Orczyk M, Gutberlet T, Trapp M, Marcinkowski K, Kobiela T, Geue T (2014) Unusual penetration of phospholipid mono- and bilayers by Quillaja bark saponin biosurfactant. Biochimica et Biophysica Acta (BBA) Biomembranes 1838(7):1931–1940. https://doi.org/10.1016/J.BBAMEM.2014.04.008

  76. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmui: ACS J Surf Colloids 24(22):12758–12765. https://doi.org/10.1021/LA801685V

    Article  CAS  Google Scholar 

  77. Yurdacan HM, Murat Sari M (2021) Functional green-based nanomaterials towards sustainable carbon capture and sequestration. Sustain Mater Transitional Altern Energy. https://doi.org/10.1016/B978-0-12-824379-4.00004-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar Chaubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, A. et al. (2023). Introduction to Green Nanoemulsions and Their Properties. In: Husen, A., Bachheti, R.K., Bachheti, A. (eds) Current Trends in Green Nano-emulsions. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5398-1_1

Download citation

Publish with us

Policies and ethics

Navigation