The Science of Mathematics Learning: An Integrative Review of Neuroimaging Data in Developmental Dyscalculia

  • Chapter
  • First Online:
Applying the Science of Learning to Education

Abstract

Developmental dyscalculia is a persistent learning difficulty characterized by difficulties in acquiring mathematics skills and deficits in neural structure and function, which affects approximately 5–8% of school-aged children. Yet much is still unknown on the heterogeneous antecedents, underlying causes and mechanisms of dyscalculia. With the availability of various non-invasive neuroimaging techniques and brain analyses methodology, developmental cognitive neuroscience emerged as an interdisciplinary field to inform our understanding of the biological causes and characteristics of this learning difficulty. This chapter reviews the current limited literature on developmental dyscalculia and summarizes the emerging patterns of math learning difficulties. It was found that children with developmental dyscalculia, compared to their typical develo** peers, showed both functional and structural differences. Functionally, they showed (1) either weaker or stronger brain activations in mathematics tasks in the fronto-parietal network anchored in the intraparietal sulcus; (2) failure to modulate neural activity in tasks with different difficulty levels; and (3) the usage of multiple compensatory mechanisms, recruiting more brain regions or/and stronger activations. Structurally, they showed: (1) grey matter deficits in the parietal lobe anchored in the intraparietal sulcus; (2) white matter deficits in the superior longitudinal fasciculus. At an overarching level, children with developmental dyscalculia can be characterized by differentiations in the fronto-parietal network which supports effective mathematics processing, as compared to typically develo** peers. Finally, limitations in the existing literature and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arsalidou M, Pawliw-Levac M, Sadeghi M, Pascual-Leone J (2018) Brain areas associated with numbers and calculations in children: meta-analyses of fMRI studies. Dev Cogn Neurosci 30:239–250

    Article  Google Scholar 

  • Ashkenazi S, Rosenberg-Lee M, Tenison C, Menon V (2012) Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Dev Cogn Neurosci 2:S152–S166

    Article  Google Scholar 

  • Attout L, Salmon E, Majerus S (2015) Working Memory for serial order is dysfunctional in adults with a history of developmental dyscalculia: evidence from behavioral and neuroimaging data. Dev Neuropsychol 40(4):230–247. https://doi.org/10.1080/87565641.2015.1036993

    Article  Google Scholar 

  • Berkowitz T et al (2015) Math at home adds up to achievement in school. Science 350(6257):196–198

    Article  Google Scholar 

  • Berteletti I, Prado J, Booth JR (2014) Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex 57:143–155

    Article  Google Scholar 

  • Blazer C (2011) Strategies for reducing math anxiety. Information capsule, Vol 1102. Research Services, Miami-Dade County Public Schools.

    Google Scholar 

  • Bowers JS (2016) The practical and principled problems with educational neuroscience. Psychol Rev 123(5):600

    Article  Google Scholar 

  • Bugden S, Ansari D (2015) How can cognitive developmental neuroscience constrain our understanding of developmental dyscalculia. The Routledge international handbook of dyscalculia and mathematical learning difficulties, pp 18–43

    Google Scholar 

  • Bugden S, Ansari D (2016) Probing the nature of deficits in the ‘approximate number system’ in children with persistent developmental dyscalculia. Dev Sci 19(5):817–833

    Article  Google Scholar 

  • Bull R, Espy KA, Wiebe SA (2008) Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Dev Neuropsychol 33(3):205–228

    Article  Google Scholar 

  • Butterworth B (2005) Developmental dyscalculia. In: Campbell JID (ed) Handbook of mathematical cognition. Psychology Press, New York

    Google Scholar 

  • Butterworth B, Varma S, Laurillard D (2011) Dyscalculia: from brain to education. Science 332:1049–1053. https://doi.org/10.1126/science.1201536

    Article  Google Scholar 

  • Cacioppo JT, Berntson GG, Nusbaum HC (2008) Neuroimaging as a new tool in the toolbox of psychological science. Curr Dir Psychol Sci 17(2):62–67

    Article  Google Scholar 

  • Campbell JI, Timm JC (2000) Adults’ strategy choices for simple addition: effects of retrieval interference. Psychon Bull Rev 7(4):692–699

    Article  Google Scholar 

  • Collins SE, Thompson DK, Kelly CE, Yang JY, Pascoe L, Inder TE, Doyle LW, Cheong JL, Burnett AC, Anderson PJ (2021) Development of brain white matter and math computation ability in children born very preterm and full-term. Dev Cogn Neurosci 51: 100987

    Google Scholar 

  • Cheng D, **ao Q, Chen Q, Cui J, Zhou X (2018) Dyslexia and dyscalculia are characterized by common visual perception deficits. Dev Neuropsychol 43(6):497–507

    Article  Google Scholar 

  • Davidesco I (2020) Brain-to-brain synchrony in the STEM classroom. CBE—Life Sci Educ 19(3): es8

    Google Scholar 

  • Davis N, Cannistraci CJ, Rogers BP, Gatenby JC, Fuchs LS, Anderson AW, Gore JC (2009) Aberrant functional activation in school age children at-risk for mathematical disability: a functional imaging study of simple arithmetic skill. Neuropsychologia 47(12): 2470–2479

    Google Scholar 

  • De Smedt, B., Peters, L., & Ghesquière, P. (2019). Neurobiological origins of mathematical learning disabilities or dyscalculia: a review of brain imaging data. International handbook of mathematical learning difficulties, 367–384.

    Google Scholar 

  • De Visscher A, Noël MP (2013) A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex 49(1):50–70

    Article  Google Scholar 

  • Devine A, Hill F, Carey E, Szűcs D (2018) Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. J Educ Psychol 110(3):431

    Article  Google Scholar 

  • Dinkel PJ, Willmes K, Krinzinger H, Konrad K, Koten JW Jr (2013) Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations. PLoS One 8(12):e83722

    Article  Google Scholar 

  • Dorjee D, Bowers JS (2012) What can fMRI tell us about the locus of learning? Cortex 48(4):509–514

    Article  Google Scholar 

  • Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell BA (2007) Temporal-callosal pathway diffusivity predicts phonological skills in children. Proc Natl Acad Sci 104(20):8556–8561

    Article  Google Scholar 

  • Duncan GJ, Dowsett CJ, Claessens A, Magnuson K, Huston AC, Klebanov P, Pagani LS, Feinstein L, Engel M, Brooks-Gunn J, Sexton H (2007) School readiness and later achievement. Dev Psychol 43(6): 1428

    Google Scholar 

  • Ettinger-Veenstra V, McAllister A, Lundberg P, Karlsson T, Engström M (2016) Higher language ability is related to angular gyrus activation increase during semantic processing, independent of sentence incongruency. Front Hum Neurosci 10:110

    Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  Google Scholar 

  • Fitzgerald J, Leemans A, Kehoe E, O’Hanlon E, Gallagher L, McGrath J (2018) Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders. Eur J Neurosci 47(6):652–661

    Article  Google Scholar 

  • Geary DC (2013) Early foundations for mathematics learning and their relations to learning disabilities. Curr Dir Psychol Sci 22(1):23–27

    Article  Google Scholar 

  • Gilmore C, Clayton S, Cragg L, McKeaveney C, Simms V, Johnson S (2018) Understanding arithmetic concepts: the role of domain-specific and domain-general skills. PLoS One 13(9):e0201724

    Article  Google Scholar 

  • Goldberg E, Bilder RM (2019) The frontal lobes and hierarchical organization of cognitive control. In: The frontal lobes revisited. Psychology Press, pp 159–187

    Google Scholar 

  • Haberstroh S, Schulte-Körne G (2019) The diagnosis and treatment of dyscalculia. Dtsch Arztebl Int 116(7):107

    Google Scholar 

  • Hawes Z, Sokolowski HM, Ononye CB, Ansari D (2019) Neural underpinnings of numerical and spatial cognition: an fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 103:316–336

    Article  Google Scholar 

  • Isaacs E, Edmonds C, Lucas A, Gadian D (2001) Calculation difficulties in children of very low birthweight: a neural correlate. Brain 124(9):1701–1707

    Article  Google Scholar 

  • Iuculano T (2016) Neurocognitive accounts of developmental dyscalculia and its remediation. Prog Brain Res 227:305–333

    Article  Google Scholar 

  • Iuculano, T. (2020a). Forming and consolidating arithmetical facts in the brain. https://solportal.ibe-unesco.org/articles/forming-and-consolidating-arithmetical-facts-in-the-brain/

  • Iuculano, T. (2020b). What is developmental dyscalculia and what does it look like in the brain? Series: IBRO/IBE-UNESCO Science of Learning Briefings. https://solportal.ibe-unesco.org/articles/what-is-developmental-dyscalculia-and-what-does-it-look-like-in-the-brain/

  • Iuculano T, Rosenberg-Lee M, Richardson J, Tenison C, Fuchs L, Supekar K, Menon V (2015) Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nat Commun 6(1):1–10

    Article  Google Scholar 

  • Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M (2006) The connection between the hippocampal and the striatal memory systems of the brain: a review of recent findings. Neurotox Res 10(2):113–121

    Article  Google Scholar 

  • Jamaludin A, Kwan M, Tan AL (2021) Low progress mathematics in a high progress system: investigating the etiology of math learning difficulties using latent profile analysis. Manuscript submitted for publication.

    Google Scholar 

  • Jamaludin A, Hung D (2019) Translational specifications of neural-informed game-based interventions for mathematical cognitive development of low-progress learners: a science of learning approach. OER Knowledge Bites.

    Google Scholar 

  • Jolles D, Ashkenazi S, Kochalka J, Evans T, Richardson J, Rosenberg‐Lee M, Zhao H, Supekar K, Chen T, Menon V (2016a) Parietal hyper‐connectivity, aberrant brain organization, and circuit‐based biomarkers in children with mathematical disabilities. Dev Sci 19(4): 613–631

    Google Scholar 

  • Jolles D, Wassermann D, Chokhani R, Richardson J, Tenison C, Bammer R, Fuchs L, Supekar K, Menon V (2016b) Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning. Brain Struct Funct 221(3): 1337–1351

    Google Scholar 

  • Kaufmann L, Vogel S, Starke M, Kremser C, Schocke M (2009a) Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: evidence from fMRI. Cogn Dev 24(4):486–494

    Article  Google Scholar 

  • Kaufmann L, Vogel SE, Starke M, Kremser C, Schocke M, Wood G (2009b) Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behav Brain Funct 5(1):1–6

    Article  Google Scholar 

  • Kolb B, Whishaw IQ (2009) Fundamentals of human neuropsychology. Macmillan

    Google Scholar 

  • Kucian K, Loenneker T, Dietrich T, Dosch M, Martin E, Von Aster M (2006) Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behav Brain Funct 2(1):1–17

    Article  Google Scholar 

  • Kucian K, McCaskey U, Tuura ROG, von Aster M (2018a) Neurostructural correlate of math anxiety in the brain of children. Transl Psychiatry 8(1):1–11

    Article  Google Scholar 

  • Kucian K, Zuber I, Kohn J, Poltz N, Wyschkon A, Esser G, von Aster M (2018b) Relation between mathematical performance, math anxiety, and affective priming in children with and without developmental dyscalculia. Front Psychol 9:263

    Article  Google Scholar 

  • Kuhn JT, Ise E, Raddatz J, Schwenk C, Dobel C (2016) Basic numerical processing, calculation, and working memory in children with dyscalculia and/or ADHD symptoms. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie.

    Google Scholar 

  • Landerl K, Bevan A, Butterworth B (2004) Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition 93(2):99–125

    Article  Google Scholar 

  • Lee Swanson H, Howard CB, Saez L (2006) Do different components of working memory underlie different subgroups of reading disabilities? J Learn Disabil 39(3):252–269

    Article  Google Scholar 

  • Leibovich T, Katzin N, Harel M, Henik A (2017) From “sense of number” to “sense of magnitude”: the role of continuous magnitudes in numerical cognition. Behav Brain Sciand Brain Sciences, 40.

    Google Scholar 

  • Levine SC, Suriyakham LW, Rowe ML, Huttenlocher J, Gunderson EA (2010) What counts in the development of young children’s number knowledge? Dev Psychol 46(5):1309

    Article  Google Scholar 

  • Li Y, Hu Y, Wang Y, Weng J, Chen F (2013) Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores. Front Hum Neurosci 7:844

    Article  Google Scholar 

  • Lubin A, Rossi S, Simon G, Lanoë C, Leroux G, Poirel N, Pineau A, Houdé O (2013) Numerical transcoding proficiency in 10-year-old schoolchildren is associated with gray matter inter-individual differences: a voxel-based morphometry study. Front Psychol 4, 197

    Google Scholar 

  • Lucchelli F, De Renzi E (1993) Primary dyscalculia after a medial frontal lesion of the left hemisphere. J Neurol Neurosurg Psychiatry 56(3):304–307

    Article  Google Scholar 

  • Mabbott DJ, Noseworthy M, Bouffet E, Laughlin S, Rockel C (2006) White matter growth as a mechanism of cognitive development in children. Neuroimage 33(3):936–946

    Article  Google Scholar 

  • Maloney EA, Ramirez G, Gunderson EA, Levine SC, Beilock SL (2015) Intergenerational effects of parents’ math anxiety on children’s math achievement and anxiety. Psychol Sci 26(9):1480–1488

    Article  Google Scholar 

  • Maloney EA, Risko EF, Preston F, Ansari D, Fugelsang J (2010) Challenging the reliability and validity of cognitive measures: the case of the numerical distance effect. Acta Physiol (oxf) 134(2):154–161

    Google Scholar 

  • Mammarella IC, Hill F, Devine A, Caviola S, Szűcs D (2015) Math anxiety and developmental dyscalculia: a study on working memory processes. J Clin Exp Neuropsychol 37(8):878–887

    Article  Google Scholar 

  • Matejko AA, Price GR, Mazzocco MM, Ansari D (2013) Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. Neuroimage 66:604–610

    Article  Google Scholar 

  • McCaskey U, von Aster M, Maurer U, Martin E, O’Gorman Tuura R, Kucian K (2018) Longitudinal brain development of numerical skills in typically develo** children and children with developmental dyscalculia. Front Hum Neurosci 11:629

    Article  Google Scholar 

  • McCaskey, U., von Aster, M., O’Gorman Tuura, R., & Kucian, K. (2017). Adolescents with developmental dyscalculia do not have a generalized magnitude deficit—processing of discrete and continuous magnitudes. Front Human Neurosci 11. https://doi.org/10.3389/fnhum.2017.00102

  • McCaskey U, Von Aster M, O’Gorman R, Kucian K (2020) Persistent differences in brain structure in developmental dyscalculia: a longitudinal morphometry study. Front Hum Neurosci 14:272

    Article  Google Scholar 

  • Menon V (2016) Working memory in children’s math learning and its disruption in dyscalculia. Curr Opin Behav Sci 10:125–132

    Article  Google Scholar 

  • Michels L, O’Gorman R, Kucian K (2018) Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Dev Cogn Neurosci 30:291–303

    Article  Google Scholar 

  • Moore DS, Johnson SP (2011) Mental rotation of dynamic, three-dimensional stimuli by 3-month-old infants. Infancy 16(4):435–445

    Article  Google Scholar 

  • Munakata Y, Casey B, Diamond A (2004) Developmental cognitive neuroscience: progress and potential. Trends Cogn Sci 8(3):122–128

    Article  Google Scholar 

  • Mussolin C, De Volder A, Grandin C, Schlögel X, Nassogne M-C, Noël M-P (2010) Neural correlates of symbolic number comparison in developmental dyscalculia. J Cogn Neurosci 22(5):860–874

    Article  Google Scholar 

  • Namkung JM, Peng P, Lin X (2019) The relation between mathematics anxiety and mathematics performance among school-aged students: a meta-analysis. Rev Educ Res 89(3):459–496

    Article  Google Scholar 

  • Noël MP, Rousselle L, De Visscher A (2016) Both specific and general cognitive factors account for dyscalculia. Spec Needs Math Educ 8:35–52

    Google Scholar 

  • Northam GB, Morgan AT, Fitzsimmons S, Baldeweg T, Liégeois FJ (2019) Corticobulbar tract injury, oromotor impairment and language plasticity in adolescents born preterm. Front Hum Neurosci 13:45

    Article  Google Scholar 

  • Oberauer K, Kliegl R (2006) A formal model of capacity limits in working memory. J Mem Lang 55(4):601–626

    Article  Google Scholar 

  • Olulade OA, Napoliello EM, Eden GF (2013) Abnormal visual motion processing is not a cause of dyslexia. Neuron 79:180–190. https://doi.org/10.1016/j.neuron.2013.05.002

    Article  Google Scholar 

  • Passolunghi MC, Caviola S, De Agostini R, Perin C, Mammarella IC (2016) Mathematics anxiety, working memory, and mathematics performance in secondary-school children. Front Psychol 7:42

    Article  Google Scholar 

  • Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzi M (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116(1): 33–41

    Google Scholar 

  • Polspoel B, Vandermosten M, De Smedt B (2020) The association of grey matter volume and cortical complexity with individual differences in children’s arithmetic fluency. Neuropsychologia 137:107293

    Article  Google Scholar 

  • Prado J (2019) How does the brain learn simple arithmetic? The impact of teaching methods. https://solportal.ibe-unesco.org/articles/how-does-the-brain-learn-simple-arithmetic-the-impact-of-teaching-methods/

  • Price GR, Holloway I, Räsänen P, Vesterinen M, Ansari D (2007) Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 17(24):R1042–R1043

    Article  Google Scholar 

  • Ranpura A, Isaacs E, Edmonds C, Rogers M, Lanigan J, Singhal A, Clayden J, Clark C, Butterworth B (2013) Developmental trajectories of grey and white matter in dyscalculia. Trends Neurosci Educ 2(2): 56–64

    Google Scholar 

  • Ritchie SJ, Bates TC (2013) Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychol Sci 24(7):1301–1308

    Article  Google Scholar 

  • Rivera SM, Reiss A, Eckert MA, Menon V (2005) Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex 15(11):1779–1790

    Article  Google Scholar 

  • Rosenberg-Lee M, Ashkenazi S, Chen T, Young CB, Geary DC, Menon V (2015) Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Dev Sci 18(3):351–372

    Article  Google Scholar 

  • Rotzer S, Kucian K, Martin E, von Aster M, Klaver P, Loenneker T (2008) Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage 39(1):417–422

    Article  Google Scholar 

  • Rotzer S, Loenneker T, Kucian K, Martin E, Klaver P, Von Aster M (2009) Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia 47(13):2859–2865

    Article  Google Scholar 

  • Rousselle L, Noël MP (2007) Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102(3):361–395

    Article  Google Scholar 

  • Rubinsten O (2015) Developmental dyscalculia: a cognitive neuroscience perspective. Brain Disord Ther 4(4):1–4

    Article  Google Scholar 

  • Rubinsten O, Tannock R (2010) Mathematics anxiety in children with developmental dyscalculia. Behav Brain Funct 6(1):1–13

    Article  Google Scholar 

  • Rykhlevskaia E, Uddin LQ, Kondos L, Menon V (2009) Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci 3:51

    Article  Google Scholar 

  • Scholl J, Kolling N, Nelissen N, Stagg CJ, Harmer CJ, Rushworth MF (2017) Excitation and inhibition in anterior cingulate predict use of past experiences. Elife 6:e20365

    Article  Google Scholar 

  • Schwartz F, Epinat-Duclos J, Léone J, Poisson A, Prado J (2018) Impaired neural processing of transitive relations in children with math learning difficulty. NeuroImage Clin 20: 1255–1265. https://doi.org/10.1016/j.nicl.2018.10.020

  • Shalev RS, Auerbach J, Manor O, Gross-Tsur V (2000) Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry 9(2):S58–S64

    Article  Google Scholar 

  • Soltanloua M, Dresler T, Artemenko C, Rosenbaum D, Ehlis A-C, Nuerk H-C (2020) Training causes activation increase in parietal and temporo-parietal regions in children with developmental dyscalculia. Retrieved 15 February 2021 from https://psyarxiv.com/aw9mq/download

  • Soltész F, Szűcs D, Dékány J, Márkus A, Csépe V (2007) A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neurosci Lett 417(2):181–186

    Article  Google Scholar 

  • Suárez-Pellicioni M, Soylu F, Booth JR (2021) Gray matter volume in left intraparietal sulcus predicts longitudinal gains in subtraction skill in elementary school. Neuroimage 235:118021

    Article  Google Scholar 

  • Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F (2013) Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 49(10): 2674–2688

    Google Scholar 

  • Szűcs D, Soltész F (2007) Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia 45(14):3190–3202

    Article  Google Scholar 

  • Taubert M, Villringer A, Ragert P (2012) Learning-related gray and white matter changes in humans: an update. Neuroscientist 18(4):320–325

    Article  Google Scholar 

  • Träff U, Olsson L, Östergren R, Skagerlund K (2017) Heterogeneity of developmental dyscalculia: cases with different deficit profiles. Front Psychol 7:2000

    Article  Google Scholar 

  • Üstün S, Ayyıldız N, Kale EH, Mançe Çalışır Ö, Uran P, Öner Ö, Olkun S, Çiçek M (2021) Children with dyscalculia show hippocampal hyperactivity during symbolic number perception. Front Hum Neurosci 15: 408

    Google Scholar 

  • Warren DH (1994) Blindness and children: an individual differences approach. Cambridge University Press.

    Google Scholar 

  • Wilkey ED, Cutting LE, Price GR (2018) Neuroanatomical correlates of performance in a state-wide test of math achievement. Dev Sci 21(2):e12545

    Article  Google Scholar 

  • Wilkey ED, Pollack C, Price GR (2020) Dyscalculia and typical math achievement are associated with individual differences in number-specific executive function. Child Dev 91(2):596–619

    Article  Google Scholar 

  • Young CB, Wu SS, Menon V (2012) The neurodevelopmental basis of math anxiety. Psychol Sci 23(5):492–501

    Article  Google Scholar 

  • Zhou X, Cheng D (2015) When and why numerosity processing is associated with developmental dyscalculia. The Routledge international handbook of dyscalculia and mathematical learning difficulties, 78–89.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Singapore National Research Foundation (NRF) under the Science of Learning Initiative (NRF2016-SOL002-003). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NRF or NIE.

The authors acknowledge with sincere thanks the contribution of Zhu Hua for the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Fengjuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fengjuan, W., Jamaludin, A. (2023). The Science of Mathematics Learning: An Integrative Review of Neuroimaging Data in Developmental Dyscalculia. In: Hung, W.L.D., Jamaludin, A., Rahman, A.A. (eds) Applying the Science of Learning to Education. Springer, Singapore. https://doi.org/10.1007/978-981-99-5378-3_3

Download citation

Publish with us

Policies and ethics

Navigation