Dirac Fermion Cooling in 3D Dirac Semimetal Cd\(_3\)As\(_2\)

  • Chapter
  • First Online:
Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals

Part of the book series: Springer Theses ((Springer Theses))

  • 162 Accesses

Abstract

Three-dimensional (3D) Dirac semimetals [1, 2] are characterized by Dirac fermions with linear dispersion near the point-like Dirac nodes in the 3D momentum space, which can be viewed as 3D analogues of two-dimensional (2D) Dirac fermions in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armitage NP, Mele EJ, Vishwanath A (2018) Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys 90:015001

    Article  ADS  MathSciNet  Google Scholar 

  2. Lv BQ, Qian T, Ding H (2021) Experimental perspective on three-dimensional topological semimetals. Rev Mod Phys 93:025002

    Article  ADS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  ADS  Google Scholar 

  4. Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  ADS  Google Scholar 

  5. Liu J, **a F, **ao D et al (2020) Semimetals for high-performance photodetection. Nat Mater 19(8):830–837

    Article  ADS  Google Scholar 

  6. Weber CP (2021) Ultrafast investigation and control of Dirac and Weyl semimetals. J Appl Phys 129(7):070901

    Article  ADS  Google Scholar 

  7. Pertsova A, Balatsky AV (2020) Dynamically induced excitonic instability in pumped Dirac materials. Ann Phys (Berl) 532(2):1900549

    Article  ADS  MATH  Google Scholar 

  8. Gierz I, Petersen JC, Mitrano M et al (2013) Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat Mater 12(12):1119–24

    Article  ADS  Google Scholar 

  9. Wang Z, Weng H, Wu Q et al (2013) Three-dimensional Dirac semimetal and quantum transport in Cd\(_{3}\)As\(_{2}\). Phys Rev B 88:125427

    Article  ADS  Google Scholar 

  10. Liu ZK, Jiang J, Zhou B et al (2014) A stable three-dimensional topological Dirac semimetal Cd\(_3\)As\(_2\). Nat Mater 13(7):677–81

    Article  ADS  Google Scholar 

  11. Neupane M, Xu SY, Sankar R et al (2014) Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd\(_3\)As\(_2\). Nat Commun 5:3786

    Article  ADS  Google Scholar 

  12. Ali MN, Gibson Q, Jeon S et al (2014) The crystal and electronic structures of Cd\(_3\)As\(_2\), the three-dimensional electronic analogue of graphene. Inorg Chem 53(8):4062–4067

    Article  Google Scholar 

  13. Liang T, Gibson Q, Ali MN et al (2015) Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd\(_3\)As\(_2\). Nat Mater 14(3):280

    Article  ADS  Google Scholar 

  14. Wang Q, Li CZ, Ge S et al (2017) Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Nano Lett 17(2):834–841

    Article  ADS  Google Scholar 

  15. Zhu C, Wang F, Meng Y et al (2017) A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun 8:14111

    Article  ADS  Google Scholar 

  16. Weber CP, Arushanov E, Berggren BS et al (2015) Transient reflectance of photoexcited Cd\(_3\)As\(_2\). Appl Phys Lett 106(23):231904

    Article  ADS  Google Scholar 

  17. Lu W, Ge S, Liu X et al (2017) Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac semimetal \(\rm C{\rm d}\rm _{3}\rm A\rm {\rm s}\rm _{2}\). Phys Rev B 95:024303

    Article  ADS  Google Scholar 

  18. Zhu C, Yuan X, **u F et al (2017) Broadband hot-carrier dynamics in three-dimensional Dirac semimetal Cd\(_3\)As\(_2\). Appl Phys Lett 111(9):091101

    Article  ADS  Google Scholar 

  19. Sun F, Wu Q, Wu YL et al (2017) Coherent helix vacancy phonon and its ultrafast dynamics waning in topological Dirac semimetal Cd\(_3\)As\(_2\). Phys Rev B 95(23):235108

    Article  ADS  Google Scholar 

  20. Lu W, Ling J, **u F et al (2018) Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal Cd\(_3\)As\(_2\). Phys Rev B 98:104310

    Article  ADS  Google Scholar 

  21. Zhang W, Yang Y, Suo P et al (2019) Ultrafast photocarrier dynamics in a 3D Dirac semimetal Cd\(_3\)As\(_2\) film studied with terahertz spectroscopy. Appl Phys Lett 114(22):221102

    Article  ADS  Google Scholar 

  22. Zhai G, Ma C, **. Phys Rev B 101:174310

    Article  ADS  Google Scholar 

  23. Ebihara S, Fukushima K, Oka T (2016) Chiral pum** effect induced by rotating electric fields. Phys Rev B 93:155107

    Article  ADS  Google Scholar 

  24. Chan CK, Oh YT, Han JH et al (2016) Type-II Weyl cone transitions in driven semimetal. Phys Rev B 94:121106

    Article  ADS  Google Scholar 

  25. Hübener H, Sentef MA, Giovannini UD et al (2017) Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials. Nat Commun 8:13940

    Article  ADS  Google Scholar 

  26. Bao C, Tang P, Sun D et al (2022) Light-induced emergent phenomena in 2D materials and topological materials. Nat Rev Phys 4:33–48

    Article  Google Scholar 

  27. Smallwood CL, Kaindl RA, Lanzara A (2016) Ultrafast angle-resolved photoemission spectroscopy of quantum materials. Europhys Lett 115(2):27001

    Article  ADS  Google Scholar 

  28. Sobota JA, He Y, Shen ZX (2021) Angle-resolved photoemission studies of quantum materials. Rev Mod Phys 93:025006

    Article  ADS  Google Scholar 

  29. Perfetti L, Loukakos P A, Lisowski M et al, Ultrafast electron relaxation in superconducting Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\)

    Google Scholar 

  30. Graf J, Jozwiak C, Smallwood CL et al (2011) Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat Phys 7(10):805–809

    Article  Google Scholar 

  31. Rettig L, Cortés R, Thirupathaiah S et al (2012) Ultrafast momentum-dependent response of electrons in antiferromagnetic EuFe\(_2\)As\(_2\) driven by optical excitation. Phys Rev Lett 108:097002

    Article  ADS  Google Scholar 

  32. Sobota JA, Yang S, Analytis JG et al (2012) Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi\(_2\)Se\(_3\). Phys Rev Lett 108:117403

    Article  ADS  Google Scholar 

  33. Wang YH, Hsieh D, Sie EJ et al (2012) Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi\(_2\)Se\(_3\) using time-resolved and angle-resolved photoemission spectroscopy. Phys Rev Lett 109:127401

    Article  ADS  Google Scholar 

  34. Johannsen JC, Ulstrup S, Cilento F et al (2013) Direct view of hot carrier dynamics in graphene. Phys Rev Lett 111:027403

    Article  ADS  Google Scholar 

  35. Carpene E, Mancini E, Dallera C et al (2009) A versatile apparatus for time-resolved photoemission spectroscopy via femtosecond pump-probe experiments. Rev Sci Instrum 80(5):055101

    Article  ADS  Google Scholar 

  36. Zhang H, Wang G, Guo L et al (2008) 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal. Appl Phys B 93(2):323–326

    Article  ADS  Google Scholar 

  37. Jiang R, Mou D, Wu Y et al (2014) Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev Sci Instrum 85(3):033902

    Article  ADS  Google Scholar 

  38. Zhou X, He S, Liu G et al (2018) New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep Prog Phys 81(6):062101

    Article  ADS  MathSciNet  Google Scholar 

  39. Bao C, Li Q, Xu S et al (2022) Population inversion and Dirac fermion cooling in 3D Dirac semimetal Cd\(_3\)As\(_2\). Nano Lett 22(3):1138–1144. https://doi.org/10.1021/acs.nanolett.1c04250

    Article  ADS  Google Scholar 

  40. Lundgren R, Fiete GA (2015) Electronic cooling in Weyl and Dirac semimetals. Phys Rev B 92:125139

    Article  ADS  Google Scholar 

  41. Osterhoudt GB, Wang Y, Garcia CAC et al (2021) Evidence for dominant phonon-electron scattering in Weyl semimetal WP\(_{2}\). Phys Rev X 11:011017

    Google Scholar 

  42. Clark OJ, Freyse F, Aguilera I et al (2021) Observation of a giant mass enhancement in the ultrafast electron dynamics of a topological semimetal. Commun Phys 4(1):1–11

    Article  Google Scholar 

  43. Breusing M, Kuehn S, Winzer T et al (2011) Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys Rev B 83:153410

    Article  ADS  Google Scholar 

  44. Sharafeev A, Gnezdilov V, Sankar R et al (2017) Optical phonon dynamics and electronic fluctuations in the Dirac semimetal \(\rm C{\rm d}\rm _{3}\rm A\rm {\rm s}\rm _{2}\). Phys Rev B 95:235148

    Article  ADS  Google Scholar 

  45. Sun BY, Zhou Y, Wu MW (2012) Dynamics of photoexcited carriers in graphene. Phys Rev B 85:125413

    Article  ADS  Google Scholar 

  46. Ulstrup S, Johannsen JC, Grioni M et al (2014) Extracting the temperature of hot carriers in time-and angle-resolved photoemission. Rev Sci Instrum 85(1):013907

    Article  ADS  Google Scholar 

  47. Rohde G, Stange A, Müller A et al (2018) Ultrafast formation of a Fermi-Dirac distributed electron gas. Phys Rev Lett 121:256401

    Article  ADS  Google Scholar 

  48. Shi X, You W, Zhang Y et al (2019) Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe\(_2\) mediated by mode-selective electron-phonon coupling. Sci Adv 5(3): eaav4449

    Google Scholar 

  49. Allen PB (1987) Theory of thermal relaxation of electrons in metals. Phys Rev Lett 59(13):1460

    Article  ADS  Google Scholar 

  50. Miller TL, Smallwood CL, Zhang W et al (2015) Photoinduced changes of the chemical potential in superconducting Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Phys Rev B 92:144506

    Article  ADS  Google Scholar 

  51. Roth S, Lee H, Sterzi A et al (2018) Reinvestigating the surface and bulk electronic properties of Cd\(_3\)As\(_2\). Phys Rev B 97:165439

    Article  ADS  Google Scholar 

  52. Winzer T, Knorr A, Malic E (2010) Carrier multiplication in graphene. Nano Lett 10(12):4839–4843

    Article  ADS  Google Scholar 

  53. Afanasiev AN, Greshnov AA, Svintsov D (2019) Relativistic suppression of Auger recombination in Weyl semimetals. Phys Rev B 99:115202

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, C. (2023). Dirac Fermion Cooling in 3D Dirac Semimetal Cd\(_3\)As\(_2\). In: Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-5325-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5325-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5324-0

  • Online ISBN: 978-981-99-5325-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation