Proteomics Novel Prospects in Target Therapy for Infectious Diseases

  • Chapter
  • First Online:
Novel Technologies in Biosystems, Biomedical & Drug Delivery
  • 176 Accesses

Abstract

RNA viruses that undergo continuous evolution can cause infectious diseases, leading to considerable harm to public health, individual well-being, and economic growth. The virus transmission can be through human-to-human, animals to humans and insects or vectors. The viruses involved are Middle East respiratory syndrome coronavirus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus, Crimean Congo virus, flaviviruses such as zika and dengue Virus. The viral protein involves with host organism proteins plays a significant part in pathogenesis and infection by avoiding the host defense mechanisms. As proteins have a huge range of functions, proteomics approaches can offer significant prudence in analyzing disease pathogenesis, etiology and discovery of potential antiretroviral pharmaceutical drug target sites and improving diagnostics. Two-dimensional gel electrophoresis, liquid chromatography, Isotope-coded affinity tag labeling-based protein profiling and Mass spectrometry are utilized for defining the structural arrangement of viral pathogens, virus and host protein interactions, conduct sensitive, high-throughput analyses of them enormously and the development of therapy strategies and improving the diagnostics. This approach also made considerable contributions to the finding of signaling cascades, the information of disease mechanisms regarding proteome changes and posttranslational modifications at some point in infection, the unfolding of viral–host protein interactions and its novel mechanisms against viral proteins. This chapter is centered on describing the usefulness of proteomics techniques that provides large set of information regarding protein interaction and new drug target could be developed for infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson NG, Anderson NL (1996) Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 17(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F, Saccon E, Neogi U (2020) Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 9(1):1748–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biron DG, Moura H, Marche L, Hughes AL, Thomas F (2005) Towards a new conceptual approach to ‘parasitoproteomics.’ Trends Parasitol 21(4):162–168

    Article  CAS  PubMed  Google Scholar 

  • Bischoff R, Luider TM (2004) Methodological advances in the discovery of protein and peptide disease markers. J Chromatogr B 803(1):27–40

    Article  CAS  Google Scholar 

  • Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, García-Sastre A, Sola I (2018) MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathog 14(1):e1006838

    Article  PubMed  PubMed Central  Google Scholar 

  • Cifani P, Kentsis A (2017) High sensitivity quantitative proteomics using automated multidimensional nano-flow chromatography and accumulated ion monitoring on quadrupole-Orbitrap-linear ion trap mass spectrometer. Mol Cell Proteomics 16(11):2006–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloeckaert A, Kuchler K (2020) Grand challenges in infectious diseases: are we prepared for worst-case scenarios? Front Microbiol 11:613383

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J, Powderly WG, Opal SM (2016) Infectious diseases E-Book. Elsevier Health Sciences

    Google Scholar 

  • Coombs KM (2020) Update on Proteomic approaches to uncovering virus-induced protein alterations and virus–host protein interactions during the progression of viral infection. Expert Rev Proteomics 17(7–8):513–532

    Article  CAS  PubMed  Google Scholar 

  • Evangelou A, Gortzak-Uzan L, Jurisica I, Kislinger T (2007) Mass spectrometry, proteomics, data mining strategies and their applications in infectious disease research. Anti-Infect Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Infective Agents) 6(2):89–105

    Google Scholar 

  • Excler JL, Saville M, Berkley S, Kim JH (2021) Vaccine development for emerging infectious diseases. Nat Med 27(4):591–600

    Article  CAS  PubMed  Google Scholar 

  • Farr Zuend C, Tobin NH, Vera T, Kotyrba L, Noël-Romas L, Birse K, Burgener AD (2020) Pregnancy associates with alterations to the host and microbial proteome in vaginal mucosa. Am J Reprod Immunol 83(6):e13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figeys D (2004) Combining different ‘omics’ technologies to map and validate protein—protein interactions in humans. Brief Funct Genomics 2(4):357–365

    Article  CAS  Google Scholar 

  • Fraisier C, Rodrigues R, Hai VV, Belghazi M, Bourdon S, Paranhos-Baccala G, Peyrefitte CN (2014) Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection. Virus Res 179:187–203

    Article  CAS  PubMed  Google Scholar 

  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, Krogan NJ (2020) A SARS–CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco TM, Cristea IM (2017) Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics 16(4):S5–S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafirassou ML, Meertens L, Umaña-Diaz C, Labeau A, Dejarnac O, Bonnet-Madin L, Amara A (2017) A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 21(13):3900–3913

    Article  CAS  PubMed  Google Scholar 

  • Han L, Ao X, Lin S, Guan S, Zheng L, Han X, Ye H (2019) Quantitative comparative proteomics reveal biomarkers for dengue disease severity. Front Microbiol 10:2836

    Article  PubMed  PubMed Central  Google Scholar 

  • He Z, Yang C, Yang C, Qi RZ, Po-Ming Tam J, Yu W (2010) Optimization-based peptide mass fingerprinting for protein mixture identification. J Comput Biol 17(3):221–235

    Article  CAS  PubMed  Google Scholar 

  • Holbrook MR (2017) Historical perspectives on flavivirus research. Viruses 9(5):97

    Google Scholar 

  • Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, McCray Jr, PB (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79(23):14614–146z21

    Google Scholar 

  • Kaddour H, Lyu Y, Welch JL, Paromov V, Mandape SN, Sakhare SS, Okeoma CM (2020) Proteomics profiling of autologous blood and semen exosomes from HIV-infected and uninfected individuals reveals compositional and functional variabilities. Mol Cell Proteomics 19(1):78–100

    Article  CAS  PubMed  Google Scholar 

  • Karr TL (2008) Application of proteomics to ecology and population biology. Heredity 100(2):200–206

    Article  CAS  PubMed  Google Scholar 

  • Klepac P, Funk S, Hollingsworth TD, Metcalf CJE, Hampson K (2015) Six challenges in the eradication of infectious diseases. Epidemics 10:97–101

    Article  PubMed  Google Scholar 

  • Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, Standing KG (2003) Mass spectrometric characterization of proteins from the SARS Virus: a preliminary report* S. Mol Cell Proteomics 2(5):346–356

    Article  CAS  PubMed  Google Scholar 

  • Landi C, Santinelli L, Bianchi L, Shaba E, Ceccarelli G, Cavallari EN, d’Ettorre G (2020) Cognitive impairment and CSF proteome modification after oral bacteriotherapy in HIV patients. J Neurovirol 26:95–106

    Article  PubMed  Google Scholar 

  • Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22(5):906–918

    Article  CAS  PubMed  Google Scholar 

  • Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS–CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5(4):562–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Guo M, Tian X, Wang X, Yang X, Wu P, Liang Q (2021) Virus-host interactome and proteomic survey reveal potential virulence factors influencing SARS–CoV-2 pathogenesis. Med 2(1):99–112

    Article  CAS  PubMed  Google Scholar 

  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lum KK, Cristea IM (2016) Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection. Expert Rev Proteomics 13(3):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, Jiang H (2004) Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 321(3):557–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone, R. W., Homan, J., Callahan, M. V., Glasspool-Malone, J., Damodaran, L., Schneider, A. D. B., … & Zika Response Working Group (2016) Zika virus: medical countermeasure development challenges. PLoS Negl Trop Dis 10(3):e0004530

    Article  Google Scholar 

  • Meyerholz DK, Lambertz AM, McCray PB Jr (2016) Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome. Am J Pathol 186(1):78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Penninger JM (2020) Inhibition of SARS–CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(4):905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morens DM, Fauci AS (2012) Emerging infectious diseases in 2012: 20 years after the institute of medicine report. Mbio 3(6):e00494-e512

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndao M (2012) Biomarker discovery in serum/plasma using surface enhanced laser desorption ionization time of flight (SELDI–TOF) Mass Spectrometry. SELDI-TOF Mass Spectrom: Methods Protoc 67–79

    Google Scholar 

  • Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, Johnson MA, Kuhn P (2008) Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82(11):5279–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhi DM, Huy NT, Ohyama K, Kimura D, Lan NTP, Uchida L, Hirayama K (2016) A proteomic approach identifies candidate early biomarkers to predict severe dengue in children. PLoS Negl Trop Dis 10(2):e0004435

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson CL, Larsson T, Gustafsson E, Karlsson KA, Davidsson P (2000) Identification of protein vaccine candidates from helicobacter p ylori using a preparative two-dimensional electrophoretic procedure and mass spectrometry. Anal Chem 72(9):2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Petriz BA, Franco OL (2014) Application of cutting-edge proteomics technologies for elucidating host–bacteria interactions. Adv Protein Chem Struct Biol 95:1–24

    Article  CAS  PubMed  Google Scholar 

  • Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA, Carbajo-Lozoya J, von Brunn A (2011) The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 7(10):e1002331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson TC, Diamond MS (2020) The continued threat of emerging flaviviruses. Nat Microbiol 5(6):796–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porta M (ed) (2008) A dictionary of epidemiology. Oxford University Press

    Google Scholar 

  • Rabelo K, Trugilho MR, Costa SM, Pereira BA, Moreira OC, Ferreira AT, Alves AM (2017) The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach. J Proteomics 152:339–354

    Article  CAS  PubMed  Google Scholar 

  • Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Haagmans BL (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440):251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder F, Steininger C (2014) Cytomegalovirus vaccine: phase II clinical trial results. Clin Microbiol Infect 20:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose RM, Besdine RW (1982) Infectious disease. Health and disease in old age. Little, Brown, Boston, pp 345–368

    Google Scholar 

  • Saraswathy N, Ramalingam P (2011) Concepts and techniques in genomics and proteomics. Elsevier

    Book  Google Scholar 

  • Shajahan A, Supekar NT, Gleinich AS, Azadi P (2020) Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS–CoV-2. Glycobiology 30(12):981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Blake TA, Ifa DR, Cooks RG, Ouyang Z (2007) Dual-source mass spectrometer with MALDI-LIT-ESI configuration. J Proteome Res 6(2):837–845

    Article  CAS  PubMed  Google Scholar 

  • Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, Papa A (2018) Second international conference on Crimean-Congo hemorrhagic fever. Antiviral Res 150:137–147

    Article  CAS  PubMed  Google Scholar 

  • Sperk M, Van Domselaar R, Rodriguez JE, Mikaeloff F, Sá Vinhas B, Saccon E, Neogi U (2020) Utility of proteomics in emerging and re-emerging infectious diseases caused by RNA viruses. J Proteome Res 19(11):4259–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins CE, Galán JE (2001) Structural mimicry in bacterial virulence. Nature 412(6848):701–705

    Article  CAS  PubMed  Google Scholar 

  • Trinh HV, Grossmann J, Gehrig P, Roschitzki B, Schlapbach R, Greber UF, Hemmi S (2013) iTRAQ-based and label-free proteomics approaches for studies of human adenovirus infections. Int J Proteomics

    Google Scholar 

  • Viswanathan K, Früh K (2007) Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Rev Proteomics 4(6):815–829

    Article  CAS  PubMed  Google Scholar 

  • WHO HIV dashboard, 2021 [online database]. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics. Accessed 27 Jan 2023

  • Wee S, Alli-Shaik A, Kek R, Swa HL, Tien WP, Lim VW, Gunaratne J (2019) Multiplex targeted mass spectrometry assay for one-shot flavivirus diagnosis. Proc Natl Acad Sci 116(14):6754–6759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447(7142):279–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2005) Combating emerging infectious diseases in the South-East Asia region (No. SEA-CD-139). WHO Regional Office for South-East Asia

    Google Scholar 

  • World Health Organization (2023) COVID-19 weekly epidemiological update, edition 125

    Google Scholar 

  • **ao X, Feng Y, Zhu Z, Dimitrov DS (2011) Identification of a putative Crimean-Congo hemorrhagic fever virus entry factor. Biochem Biophys Res Commun 411(2):253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zicari S, Sessa L, Cotugno N, Ruggiero A, Morrocchi E, Concato C, Palma P (2019) Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses 11(3):200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipali Talele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talele, D., Talele, C. (2023). Proteomics Novel Prospects in Target Therapy for Infectious Diseases. In: Kulkarni, S., Haghi, A.K., Manwatkar, S. (eds) Novel Technologies in Biosystems, Biomedical & Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-99-5281-6_11

Download citation

Publish with us

Policies and ethics

Navigation