Thermal Property of Polymers

  • Chapter
  • First Online:
Structural Science of Crystalline Polymers
  • 65 Accesses

Abstract

By changing temperature, crystalline polymers experience the various phase transitions including the phenomena of melting, crystallization, thermal degradation, and so on. The experimental techniques how to measure the thermal behaviors of polymer materials are introduced in a concrete manner. In particular, the details of the differential scanning calorimetric (DSC) method are described, including the modulated-temperature DSC technique. As for the thermomechanical analysis (TMA), the effect of tensile force on the structure and mechanical property of the thermally-activated polymer chains is learned experimentally and theoretically as one typical case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Wanga, Z.-C. Tana, S.-H. Menga, D.-B. Liang, Low-temperature heat capacity and phase transition of n-hexatriacontane. Thermochim. Acta 342, 59–65 (1999)

    Article  Google Scholar 

  2. F.D. Rossini, Experimental Themochemistry—Measurement of Heats of Reaction (Interscience-Wiley, New York, 1956)

    Google Scholar 

  3. H.A. Skinner, Experimental Thermochemistry, vol. 2 (Interscience-Wiley, New York, 1962)

    Google Scholar 

  4. R.S. Jessup, Precise Measurement of Heat Combustion with a Bomb Calorimeter, U.S. Bureau of Standards Monograph No. 7 (US Government Printing Office, Washington, D.C., 1970)

    Google Scholar 

  5. Y. Saito, Fundamental aspects of differential thermal analysis and differential scanning calorimetry (in Japanese). Inorg. Mater. 3, 271–283 (1996)

    Google Scholar 

  6. E.-Z. Ebeid, M. Zakaria, Thermal Analysis; From Introductory Fundamentals to Advanced Applications (Elsevier, New York, 2021)

    Google Scholar 

  7. G.W.H. Höhne, W.F. Hemminger, H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, New York, 2023)

    Google Scholar 

  8. K. Tashiro, Crystal Structure and Phase Transition of PVDF and Related Copolymers, Ferroelectric Polymers: Chemistry, Physics, and Technology, ed. by H.S. Nalwa (Marcel Dekker Inc., New York, 1995), pp. 63–182

    Google Scholar 

  9. K. Tashiro, R. Tanaka, M. Kobayashi, Detection of sharp DSC peak during the phase transition from the low-temperature phase to the cooled phase of vinylidene fluoride-trifluoroethylene copolymers. Macromolecules 32, 514–517 (1999)

    Article  CAS  Google Scholar 

  10. J. Hou, K. Tashiro, M. Kobayashi, Effect of chiral alkyl groups on the structural phase transition of ferroelectric liquid crystals investigated by differential scanning calorimetry, x-ray diffraction, and infrared/Raman spectroscopic methods. J. Phys. Chem. 96, 2729–2735 (1992)

    Article  CAS  Google Scholar 

  11. P.F. Sullivann, G. Seidel, Steady-state, ac-temperature calorimetry. Phys. Rev. 173, 679–685 (1968)

    Article  Google Scholar 

  12. M. Reading, D. Elliott, V.L. Hill, A new approach to the calorimetric investigation of physical and chemical transitions. J. Therm. Anals. 40, 949–955 (1993)

    Article  CAS  Google Scholar 

  13. H. Mizuno, Y. Nagano, K. Tashiro, M. Kobayashi, A study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers by AC calorimetry. J. Chem. Phys. 96, 3234–3239 (1992)

    Article  CAS  Google Scholar 

  14. J.D. Baloga, C.W. Garland, AC calorimetry at high pressure. Rev. Sci. Instrum. 48, 105–110 (1977)

    Article  CAS  Google Scholar 

  15. P.G. Royall, V.L. Kett, C.S. Andrews, D.Q.M. Craig, Identification of crystalline and amorphous regions in low molecular weight materials using microthermal analysis. J. Phys. Chem. B. 105, 7021–7026 (2001)

    Article  CAS  Google Scholar 

  16. S. Qi, D.Q.M. Craig, The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation. Mol. Pharm. 9, 1087–1099 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. P.S. Gill, S.R. Sauerbrunn, M. Reading, Modulated differential scanning calorimetry. J. Therm. Anal. 40, 931–939 (1993)

    Article  CAS  Google Scholar 

  18. M. Reading, A. Luget, R. Wilson, Modulated differential scanning calorimetry. Thermochim. Acta 238, 295–307 (1994)

    Article  CAS  Google Scholar 

  19. B. Wunderlich, Y. **, A. Boller, Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim. Acta 238, 277–293 (1994)

    Article  CAS  Google Scholar 

  20. A. Boller, Y. **, B. Wunderlich, Heat capacity measurement by modulated DSC at constant temperature. J. Therm. Anal. 42, 307–330 (1994)

    Article  CAS  Google Scholar 

  21. I. Hatta, Compatibility of differential scanning calorimetry and ac calorimetry. Jpn. J. Appl. Phys. 33(Part 2, No. 5A), L686–L688 (1994)

    Google Scholar 

  22. E. Gmelin, Classica1 temperature-modulated calorimetry: a review. Thermochim. Acts 304(305), 1–26 (1997)

    Google Scholar 

  23. M. Ribeiro, J.-P.E. Grolier, Temperature modulated DSC for the investigation of polymer materials: a brief account of recent studies. J. Therm. Anal. Calorim. 57, 253–263 (1999)

    Article  CAS  Google Scholar 

  24. E. Verdonck, K. Schaap, L.C. Thomas, A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int. J. Pharm. 192, 3–20 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. C. Schick, A. Wurm, M. Merzlyakov, A. Minakov, H. Marand, Crystallization and melting of polycarbonate studied by temperature-modulated DSC (TMDSC). J. Therm. Anal. Calorim. 64, 549–555 (2001)

    Article  CAS  Google Scholar 

  26. K. Ishikiriyama, Temperature modulated differential scanning calorimetry (in Japanese). Sen’i Gakkai-shi (J. Fiber Soc. Japan) 65, 428–432 (2009)

    Google Scholar 

  27. H.G. Zachmann, Statistische Thermodynamik des Kristamsierens und Schmelzens von hochpolymeren Stoffen. Koll. Z. Z. Polym. 231, 504–534 (1967)

    Article  Google Scholar 

  28. A. Miyagi, B. Wunderlich, Superheating and reorganization on melting of poly(ethy1ene terephthalate). J. Polym. Sci. A-2, Polym. Phys. 10, 1401–1405 (1972)

    Google Scholar 

  29. M. Todoki, T. Kawaguchi, Melting of constrained drawn nylon 6 yarns. J. Polym. Sci. Polym. Phys. Ed. 15, 1507–1520 (1977)

    Google Scholar 

  30. K. Tashiro, Y. Nakai, M. Kobayashi, H. Tadokoro, Solid-state transition of poly(butylene terephthalate) induced by mechanical deformation. Macromolecules 13, 137–145 (1980)

    Article  CAS  Google Scholar 

  31. B. Wunderlich, Crystal Melting, Macromolecular physics, vol. 3 (Academic Press, New York, 1980)

    Google Scholar 

  32. P.N. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Korpers. Z. Physik. Chemie 65, 545–548 (1909)

    Article  CAS  Google Scholar 

  33. E. Rie, Einfluß der Oberflächenspannung auf Schmelzen und Gefrieren. Anzeiger der Akademie der Wissenschaften in Wien: Mathematisch-naturwissenschaftliche Klasse 57, 137–139 (1920)

    Google Scholar 

  34. E. Rie, Über die Einfluss der Oberflächenspannung auf Schmelzen und Gefrieren. Z. Phys. Chem. 104, 354–362 (1923)

    Article  CAS  Google Scholar 

  35. G. Tammann, Über eine Methode zur Bestimmung der Abhängigkeit des Schmelzpunktes einer Kristallamelle von ihrer Dicke. Z. Anorg. Allgem. Chemie 110, 166–168 (1920)

    Article  CAS  Google Scholar 

  36. F. Meissner, F. Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen. Nr. 8. Über den Einfluß der Zerteilung auf die Schmelztemperatur. Z. Anorg. Allgem. Chemie 110, 169–186 (1920)

    Google Scholar 

  37. S. Kummara, K. Tashiro, Phenomenological study of the isotope effect on the equilibrium melting point of polymer crystal. Polymer 80, 138–145 (2015)

    Article  CAS  Google Scholar 

  38. S. Kummara, K. Tashiro, T. Monma, K. Horita, Isotope effect on the melt-isothermal crystallization of polyoxymethylene D/H random copolymers and D/H blend samples. Macromolecules 48, 8070–8081 (2015)

    Article  CAS  Google Scholar 

  39. J.D. Hoffman, J.J. Weeks, Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand. 66, 13–28 (1962)

    Article  Google Scholar 

  40. R.K. Reddy, K. Tashiro, T. Sakurai, N. Yamaguchi, Isotope effect on the isothermal crystallization behavior of isotactic polypropylene blends between the deuterated and hydrogenated species. Macromolecules 42, 1672–1678 (2009)

    Article  CAS  Google Scholar 

  41. T. Ii, K. Tashiro, M. Kobayashi, H. Tadokoro, Thermomechanical and ultrasonic properties of high-modulus aromatic polyamide fibers. Macromolecules 19, 1809–1814 (1986)

    Article  CAS  Google Scholar 

  42. T. Ii, K. Tashiro, M. Kobayashi, H. Tadokoro, X-ray study of lattice tensile properties of fully extended aromatic polyamide fibers over a wide temperature range. Macromolecules 20, 347–351 (1987)

    Article  CAS  Google Scholar 

  43. T. Ii, K. Tashiro, M. Kobayashi, H. Tadokoro, Axial thermal contraction and related mechanical properties of a polymer lattice: proposition of a string-in-medium model. Macromolecules 20, 552–557 (1987)

    Article  CAS  Google Scholar 

  44. K. Tashiro, S. Nishimura, M. Kobayashi, Thermal contraction and ferroelectric phase transition in vinylidene fluoride-trifluoroethylene copolymers. 1. An effect of tensile stress along the chain axis. Macromolecules 21, 2463–2469 (1988)

    Google Scholar 

  45. K. Tashiro, S. Nishimura, M. Kobayashi, Thermal contraction and ferroelectric phase transition in vinylidene fluoride-trifluoroethylene copolymers. 2. An effect of tensile stress applied in the direction perpendicular to the chain axis. Macromolecules 23, 2802–2806 (1990)

    Google Scholar 

  46. A. Baldini, M. Bruzzi, Thermally stimulated current spectroscopy: experimental techniques for the investigation of silicon detectors. Rev. Sci. Instrum. 64, 932–936 (1993)

    Article  CAS  Google Scholar 

  47. W. Wu, Z. Liu, Y. GU, Z. Yue, Y. Li, Thermally stimulated depolarization current study on barium titanate single crystals. AIP Adv. 8, 045005 (2018)

    Google Scholar 

  48. R.M. Faria, J.M. Guimarães Neto, O.N. Oliveira, Thermal studies on VDF/TRFE copolymers. J. Phys. D: Appl. Phys. 27, 611–615 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tashiro, K. (2024). Thermal Property of Polymers. In: Structural Science of Crystalline Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-99-5261-8_2

Download citation

Publish with us

Policies and ethics

Navigation