Dielectric Materials with Hyperordered Structures

  • Chapter
  • First Online:
Hyperordered Structures in Materials

Part of the book series: The Materials Research Society Series ((MRSS))

  • 221 Accesses

Abstract

Dielectric materials with “hyperordered structures” are introduced in this section. Dielectric materials are one of the key ingredients in modern electronics, as they are used in capacitors, actuators, frequency filters, and nonvolatile memories in various devices. Recent rapid growth of information and communication technologies and power electronics has inspired vital research into the development of novel dielectric materials with high permittivity, which can boost miniaturization of electronic devices and improve the energy storage density of capacitors. A conventional way to explore high-permittivity dielectrics is to design the bulk property of materials by means of ferroelectric phase transition. Many experimental and theoretical findings, however, have suggested that imperfections of materials sometimes give rise to an extraordinarily large dielectric response, as represented by relaxors. Although individual investigations are still underway, there seems to be something beyond imperfection underlying the design of high-permittivity dielectrics, namely “hyperordered structures” (HOSs). Section 13.1 provides an overview of the fundamentals of dielectric materials. Then, Sect. 13.2 introduces several conventional concepts for designing the permittivity of homogeneous dielectric materials. Next, inhomogeneous systems that show high permittivity greater than the homogeneous systems are described in Sect. 13.3. Section 13.4 discusses one potential HOS candidate in dielectric materials, electron-pinned defect dipoles, which are the extended local structures of large polarizability that form around heterovalent ions introduced to a bulk matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shannon RD (1993) J Appl Phys 73:348

    Article  CAS  Google Scholar 

  2. Sakayori K, Matsui Y, Abe H, Nakamura E, Kenmoku M, Hara T, Ishikawa D, Kokubu A, Hirota K, Ikeda T (1995) Jpn J Appl Phys 34:544

    Article  Google Scholar 

  3. Kersten O, Rost A, Schmidt G (1988) Ferroelectrics 81:31

    Article  Google Scholar 

  4. Scott JF (1974) Rev Mod Phys 46:83

    Article  CAS  Google Scholar 

  5. Lyddane RH, Sachs RG, Teller E (1941) Phys Rev 59:673

    Article  CAS  Google Scholar 

  6. Barker AS Jr (1975) Phys Rev B 12:4071

    Article  Google Scholar 

  7. Parker RA (1961) Phys Rev 124:1719

    Google Scholar 

  8. Traylor JG, Smith HG, Nicklow RM, Wilkinson MK (1971) Phys Rev B 3:3457

    Article  Google Scholar 

  9. Müller KA, Burkard H (1979) Phys Rev B 19:3593

    Article  Google Scholar 

  10. Taniguchi H, Itoh M, Yagi T (2007) Phys Rev Lett 99:017602

    Article  Google Scholar 

  11. Cohen RE (1992) Nature 358:136–138

    Article  CAS  Google Scholar 

  12. Kuroiwa Y, Aoyagi S, Sawada A, Harada J, Nishibori E, Takata M, Sakata M (2001) Phys Rev Lett 87:217601

    Article  CAS  Google Scholar 

  13. Taniguchi H, Soon HP, Shimizu T, Moriwake H, Shan YJ, Itoh M (2011) Phys Rev B 84:174106

    Article  Google Scholar 

  14. Moriwake H, Kuwabara A, Fisher CAJ, Taniguchi H, Itoh M, Tanaka I (2011) Phys Rev B 84:104114

    Article  Google Scholar 

  15. Taniguchi H, Soon HP, Moriwake H, Shan YJ, Itoh M (2012) Ferroelectrics 426:268–273

    Article  CAS  Google Scholar 

  16. Sasaki S, Prewitt CT, Bass JD, Schulze WA (1987) Acta Cryst C43:1668–1674

    CAS  Google Scholar 

  17. Glazer AM (1972) Acta Cryst B28:3384–3392

    Article  Google Scholar 

  18. Shan YJ, Mori H, Tezuka K, Imoto H, Itoh M (2003) Ferroelectrics 284:107–112

    Article  CAS  Google Scholar 

  19. Burns G, Dacol FH (1983) Phys Rev B 28:2527–2530

    Article  CAS  Google Scholar 

  20. Cross LE (1987) Ferroelectrics 76:241–267

    Article  CAS  Google Scholar 

  21. Bokov AA, Ye Z-G (2006) J Mater Sci 41:31–52

    Article  CAS  Google Scholar 

  22. Cowley RA, Gvasaliya SN, Lushnikov SG, Roessli B, Rotaru GM (2011) Adv Phys 60:229–327

    Article  CAS  Google Scholar 

  23. Hirota K, Ye Z-G, Wakimoto S, Gehring PM, Shirane G (2002) Phys Rev B 65:104105

    Article  Google Scholar 

  24. Fu D, Taniguchi H, Itoh M, Koshihara S, Yamamoto N, Mori S (2009) Phys Rev Lett 103:207601

    Article  Google Scholar 

  25. Pirc R, Blinc R (2007) Phys Rev B 76:020101(R)

    Article  Google Scholar 

  26. Viehland D, Jang S, Cross LE, Wuttig M (1991) Philos Mag B 64:335–344

    Article  CAS  Google Scholar 

  27. Samara GA (2003) J Phys Condens Matter 15:R367–R411

    Article  CAS  Google Scholar 

  28. Hilton AD, Barber DJ, Randall CA, Shrout TR (1990) J Mater Sci 25:3461

    Article  CAS  Google Scholar 

  29. Boulesteix C, Varnier F, Llebaria A, Husson E (1994) J Solid State Chem 108:141

    Article  CAS  Google Scholar 

  30. Chen J, Chan HM, Harmer MP (1989) J Am Ceram Soc 72:593

    Article  CAS  Google Scholar 

  31. Taniguchi H, Itoh M, Fu D (2011) J Raman Spectrosc 42:706–714

    Article  CAS  Google Scholar 

  32. Manley ME, Lynn JW, Abernathy DL, Specht ED, Delaire O, Bishop AR, Sahul R, Budai JD (2014) Nat Commun 5:3683

    Article  CAS  Google Scholar 

  33. Adams TB, Sinclair DC, West AR (2002) Adv Mater 14:1321–1323

    Article  CAS  Google Scholar 

  34. Zhang JL, Zheng P, Wang CL, Zhao ML, Li JC, Wang JF (2005) Appl Phys Lett 87:142901

    Article  Google Scholar 

  35. Lunkenheimer P, Fichtl R, Ebbinghaus SG, Loidl A (2004) Phys Rev B 70:172102

    Article  Google Scholar 

  36. Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153

    Article  CAS  Google Scholar 

  37. Fu D, Taniguchi H, Taniyama T, Itoh M, Koshihara S (2008) Chem Mater 20:1694–1698

    Article  CAS  Google Scholar 

  38. Yu J, Ishikawa T, Arai Y, Yoda S, Itoh M, Saita Y (2005) Appl Phys Lett 87:252904

    Article  Google Scholar 

  39. von Hippel A (1954) Dielectrics and waves. Willey, New York

    Google Scholar 

  40. Hu W, Liu Y, Withers RL, Frankcombe TJ, Norén L, Snashall A, Kitchin M, Smith P, Gong B, Chen H, Schiemer J, Brink F, Wong-Leung J (2013) Nat Mater 12:821–826

    Article  CAS  Google Scholar 

  41. Li J, Li F, Li C, Yang G, Xu Z, Zhang S (2015) Sci Rep 5:8295

    Article  CAS  Google Scholar 

  42. Song Y, Wang X, Sui Y, Liu Z, Zhang Y, Zhan H, Song B, Liu Z, Lv Z, Tao L, Tang J (2016) Sci Rep 6:21478

    Article  CAS  Google Scholar 

  43. Kawarasaki M, Tanabe K, Terasaki I, Fujii Y, Taniguchi H (2017) Sci Rep 7:5351

    Article  Google Scholar 

  44. Taniguchi1 H, Ando K, Terasaki I (2017) Jpn J Appl Phys 56:10PC02

    Google Scholar 

  45. Taniguchi H, Sato D, Nakano A, Terasaki I (2020) J Mater Chem C 8:13627–13631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grant numbers JP20H05878 and JP20H05879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Materials Research Society, under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taniguchi, H. (2024). Dielectric Materials with Hyperordered Structures. In: Hayashi, K. (eds) Hyperordered Structures in Materials. The Materials Research Society Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5235-9_13

Download citation

Publish with us

Policies and ethics

Navigation