Antimicrobial Agents Induced Microbiome Dysbiosis Its Impact on Immune System and Metabolic Health

  • Chapter
  • First Online:
Human Microbiome in Health, Disease, and Therapy
  • 190 Accesses

Abstract

The role of antimicrobial agents like antibiotics and antiseptics in their clinical use in treating various diseases and in their non-medicinal uses in agricultural crops and animal farming is well known to all. Broad- and narrow-spectrum antibiotics when used against pathogenic bacteria not only show their action on pathogens but also show their indiscriminate action on commensal microbial flora. Over usage and misuse of antibiotics result in microbial resistance against antibiotics. Antibiotics, when administered to treat diseases, show their action on pathogenic bacteria, and simultaneously they show their mode of action on resident beneficial microbiota which in turn leads to alteration of microbiome composition. Excessive usage of antibiotics also negatively impacts human health and immunity. Microbiome, present in human beings, helps in various activities like nutrition, metabolism, etc. by producing amino acids, vitamins, and short chain fatty acids and also helps develo** immunity against a wide range of pathogens. The constant exposure of human microbiome to various antibiotics and antiseptics results in disruption in its ecology and imbalance of microbial composition which is referred to as microbiome dysbiosis. Imbalance in the harmonic relationship between the host and the microbiome, caused due to various external and internal factors affecting the human body, results in disruption in homeostasis and causes various diseases. The diseases associated with microbiome dysbiosis include obesity, celiac disease, diabetes, inflammatory bowel disease, rheumatic arthritis, neurodegenerative disorder, depression, autism, malignancy, and cancer. Fecal microbiota transplantation and manipulation of microbiota using probiotics are trending tools in microbiome research and are very useful applications in restoring microbial communities and correcting microbial dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M (2008) Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol 84(2):468–476

    Article  CAS  PubMed  Google Scholar 

  • Belizário JE, Faintuch J, Garay-Malpartida M (2018) Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediat Inflamm 2018:2037838

    Article  Google Scholar 

  • Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC et al (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107(8):1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg R, Powrie F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4(137):137rv7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  CAS  PubMed  Google Scholar 

  • Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455(7214):804–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton RA, Young VB (2014) Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146(6):1547–1553

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin a responses. Immunity 28(6):740–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6(4):110

    Article  PubMed  PubMed Central  Google Scholar 

  • Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, Gordon JI (2016) A microbial perspective of human developmental biology. Nature 535(7610):48–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Cochetière MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43(11):5588–5592

    Article  PubMed  Google Scholar 

  • Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108(Supplement 1):4554–4561

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimmitt RA, Staley EM, Chuang G, Tanner SC, Soltau TD, Lorenz RG (2010) The role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr 51(3):262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour V, Millon L, Faucher JF, Bard E, Robinet E, Piarroux R et al (2005) Effects of a short-course of amoxicillin/clavulanic acid on systemic and mucosal immunity in healthy adult humans. Int Immunopharmacol 5(5):917–928

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A (2017) Antibiotic use and microbiome function. Biochem Pharmacol 134:114–126

    Article  CAS  PubMed  Google Scholar 

  • Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM et al (2014a) Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One 9(9):e108016

    Article  PubMed  PubMed Central  Google Scholar 

  • Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2014b) A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and β-lactam resistance genes in the gut microbiota. BMC Microbiol 14(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Francino MP (2016) Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 6:1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner CD, Antonopoulos DA, Wagner B, Duhamel GE, Keresztes I, Ross DA et al (2009) Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a salmonella enterica serovar typhimurium murine model of infection. Infect Immun 77(7):2691–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer R, Dong X, Morgun A, Shulzhenko N (2016) Investigating a holobiont: microbiota perturbations and transkingdom networks. Gut Microbes 7(2):126–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández E, Bargiela R, Diez MS, Friedrichs A, Pérez-Cobas AE, Gosalbes MJ et al (2013) Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity. Gut Microbes 4(4):306–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ et al (2010) Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 3(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M et al (2012) Commensal bacteria–derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18(4):538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22(1):283–307

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Th17 cells secrete interleukin-17 (IL-17), IL-17F, and IL-22 and have significant roles in protecting the host from bacterial and fungal infections, particularly at mucosal surfaces. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66. https://doi.org/10.1038/ismej.2007

    Article  CAS  PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  • Kline JN (2007) Eat dirt: CpG DNA and immunomodulation of asthma. Proc Am Thorac Soc 4(3):283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoop KA, McDonald KG, Kulkarni DH, Newberry RD (2016) Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65(7):1100–1109

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S (2011) Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 45:S120–S127

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Takeda K (2019) Host–microbiota interactions in rheumatoid arthritis. Exp Mol Med 51(12):1–6

    Article  CAS  PubMed  Google Scholar 

  • Main BS, Minter MR (2017) Microbial immuno-communication in neurodegenerative diseases. Front Neurosci 11:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuzak JA, Zevin AS, Cheu R, Richardson B, Modesitt J, Hensley-McBain T et al (2020) Antibiotic-induced microbiome perturbations are associated with significant alterations to colonic mucosal immunity in rhesus macaques. Mucosal Immunol 13(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekonnen SA, Merenstein D, Fraser CM, Marco ML (2020) Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 61:226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meropol SB, Edwards A (2015) Development of the infant intestinal microbiome: a bird’s eye view of a complex process. Birth Defects Res C Embryo Today 105(4):228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen KH, Frost M, Bahl MI, Licht TR, Jensen US, Rosenberg J et al (2015) Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One 10(11):e0142352

    Article  PubMed  PubMed Central  Google Scholar 

  • Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, Queipo-Ortuño MI (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6(1):1–15

    Article  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K et al (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11):1591–1601

    Article  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  • Rautava S, Ruuskanen O, Ouwehand A, Salminen S, Isolauri E (2004) The hygiene hypothesis of atopic disease—an extended version. J Pediatr Gastroenterol Nutr 38(4):378–388

    Article  PubMed  Google Scholar 

  • Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY et al (2017) Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol 8:2306

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci 105(43):16767–16772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz Y, Olivares M, Moya-Pérez Á, Agostoni C (2015) Understanding the role of gut microbiome in metabolic disease risk. Pediatr Res 77(1–2):236–244

    Article  PubMed  Google Scholar 

  • Schumann A, Nutten S, Donnicola D, Comelli EM, Mansourian R, Cherbut C et al (2005) Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genomics 23(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Strzępa A, Majewska-Szczepanik M, Lobo FM, Wen L, Szczepanik M (2017) Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model. J Allergy Clin Immunol 140(1):121–133

    Article  PubMed  Google Scholar 

  • Sudo N, Yu XN, Aiba Y, Oyama N, Sonoda J, Koga Y, Kubo C (2002) An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin Exp Allergy 32(7):1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang X, Zhang Y, Zheng K, **ang Q, Chen N et al (2019) Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front Cell Infect Microbiol 9:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kobayashi T, Song**da P, Tateyama A, Tsubouchi M, Kiyohara C et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G et al (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  • Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M et al (2010) Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120(12):4332–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, Equinda M et al (2012) Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 209(8):1445–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utzschneider KM, Kratz M, Damman CJ, Hullarg M (2016) Mechanisms linking the gut microbiome and glucose metabolism. J Clin Endocrinol Metab 101(4):1445–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valitutti F, Cucchiara S, Fasano A (2019) Celiac disease and the microbiome. Nutrients 11(10):2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328(5975):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virella G (ed) (1997) Microbiology and infectious diseases. Williams & Wilkins

    Google Scholar 

  • Vollaard EJ, Clasener HA (1994) Colonization resistance. Antimicrob Agents Chemother 38(3):409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60(4):824–831

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yao M, Lv L, Ling Z, Li L (2017) The human microbiota in health and disease. Engineering 3(1):71–82

    Article  Google Scholar 

  • Wang S, Qu Y, Chang L, Pu Y, Zhang K, Hashimoto K (2020) Antibiotic-induced microbiome depletion is associated with resilience in mice after chronic social defeat stress. J Affect Disord 260:448–457

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N et al (2011) Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79(4):1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L et al (2020) The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics 21:1–18

    Article  Google Scholar 

  • Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z (2017) Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 8:942

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Bi JJ, Guo GJ, Yang L, Zhu B, Zhan GF et al (2019) Abnormal composition of gut microbiota contributes to delirium-like behaviors after abdominal surgery in mice. CNS Neurosci Ther 25(6):685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:1–15

    Article  Google Scholar 

Download references

Acknowledgment

Authors thank principal and management of Bhavan’s Vivekananda college of Science, Humanities and Commerce for the encouragement and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anuradha, K., Sarada, J., Aparna, Y., Anju, S. (2023). Antimicrobial Agents Induced Microbiome Dysbiosis Its Impact on Immune System and Metabolic Health. In: Veera Bramhachari, P. (eds) Human Microbiome in Health, Disease, and Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-99-5114-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5114-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5113-0

  • Online ISBN: 978-981-99-5114-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation