Machining Performance of Cobalt-Chromium and β-Type Titanium Biomedical Alloy

  • Chapter
  • First Online:
Materials for Biomedical Simulation

Abstract

In the current study, the machining performance evaluation of electric discharge-machined Cobalt Chromium (Co–Cr) and β-type titanium (Ti) alloys is reported. The research investigation was carried out using Taguchi’s L9 orthogonal array with the electrode, current, pulse-on time, and pulse-off time as the input variables. For determining the importance of machining performance parameters on the machined surface of both biomedical alloys, material removal rate was determined. The material removal rate calculations’ findings showed that the titanium alloy substrate had 1.5 times higher MRR than the Co–Cr alloy substrate. The ideal parametric configuration for machining is a 16 A peak current at a 150 ms pulse on time and a 60 ms pulse off time with a tungsten-copper (W–Cu) electrode. An examination of the surface’s morphology showed that low metal removal rate machining produces surfaces with higher integrity when compared to high metal removal rate machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209:3675–3687. https://doi.org/10.1016/J.JMATPROTEC.2008.09.032

    Article  CAS  Google Scholar 

  2. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  3. Singh G, Sidhu SS, Bains PS, Bhui AS (2019) Surface evaluation of ED machined 316L stainless steel in TiO2 nano-powder mixed dielectric medium. Mater Today Proc 18:1297–1303. https://doi.org/10.1016/J.MATPR.2019.06.592

    Article  CAS  Google Scholar 

  4. Mahajan A, Sidhu SS, Ablyaz T (2019) EDM Surface Treatment: An Enhanced Biocompatible Interface, Material Horizons From Nature to Nanomaterial. pp 33–40. https://doi.org/10.1007/978-981-13-9977-0_3/COVER

  5. Bhui AS, Singh G, Sidhu SS, Bains PS (2018) EXPERIMENTAL INVESTIGATION OF OPTIMAL ED MACHINING PARAMETERS FOR Ti-6Al-4V BIOMATERIAL. Facta Univ Ser Mech Eng 16:337–345. https://doi.org/10.22190/FUME180824033B

    Article  Google Scholar 

  6. Srivastava V, Pandey PM (2013) Study of ultrasonic assisted cryogenically cooled EDM process using sintered (Cu–TiC) tooltip. J Manuf Process 15:158–166. https://doi.org/10.1016/J.JMAPRO.2012.12.002

    Article  Google Scholar 

  7. Guu YH, Hocheng H, Chou CY, Deng CS (2003) Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel. Mater Sci Eng A 358:37–43. https://doi.org/10.1016/S0921-5093(03)00272-7

    Article  CAS  Google Scholar 

  8. Das MK, Kumar K, Barman TK, Sahoo P (2014) Application of artificial bee colony algorithm for optimization of mrr and surface roughness in EDM of EN31 tool steel. Procedia Mater Sci 6:741–751. https://doi.org/10.1016/J.MSPRO.2014.07.090

    Article  CAS  Google Scholar 

  9. Sharif S, Safiei W, Mansor AF, Isa MHM, Saad RM (2015) Experimental study of electrical discharge machine (die sinking) on stainless steel 316L using design of experiment. Procedia Manuf 2:147–152. https://doi.org/10.1016/J.PROMFG.2015.07.026

    Article  Google Scholar 

  10. Mahajan A, Devgan S, Kalyanasundaram D (2022) Surface alteration of Cobalt-Chromium and duplex stainless steel alloys for biomedical applications: a concise review. Mater Manuf Process. https://doi.org/10.1080/10426914.2022.2105873

    Article  Google Scholar 

  11. Mahajan A, Singh G, Devgan S, Sidhu SS (2020) EDM performance characteristics and electrochemical corrosion analysis of Co-Cr alloy and duplex stainless steel: a comparative study. Proc Inst Mech Eng E: J Process Mech Eng 235:812–823. https://doi.org/10.1177/0954408920976739

    Article  CAS  Google Scholar 

  12. Devgan S, Mahajan A, Singh G, Singh G, Sidhu SS (2022) Surface integrity of powder mixed electrical discharge treated substrate at high discharge energies. Lecture notes mechanical engineering. pp 207–217. https://doi.org/10.1007/978-981-16-2278-6_18/COVER

  13. Chen YF, Chow HM, Lin YC, Lin CT (2008) Surface modification using semi-sintered electrodes on electrical discharge machining. Int J Adv Manuf Technol 36:490–500. https://doi.org/10.1007/S00170-006-0859-X

    Article  Google Scholar 

  14. Singh G, Mahajan A, Devgan S, Sidhu SS (2022) Comparison of copper and tungsten electrodes for the electric discharge machined SUS-316L. Lecture notes mechanical engineering. pp 197–206. https://doi.org/10.1007/978-981-16-2278-6_17/COVER

  15. Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, Kong X, Dai K, Hao Y (2016) In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 6(1):1–11. https://doi.org/10.1038/srep34072

    Article  CAS  Google Scholar 

  16. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–3403. https://doi.org/10.1016/J.BIOMATERIALS.2011.01.029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devgan, S., Mahajan, A., Mahajan, V. (2023). Machining Performance of Cobalt-Chromium and β-Type Titanium Biomedical Alloy. In: Chanda, A., Sidhu, S.S., Singh, G. (eds) Materials for Biomedical Simulation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5064-5_5

Download citation

Publish with us

Policies and ethics

Navigation