Nanocarriers as a Novel Approach for Phytochemical Delivery in Food

  • Chapter
  • First Online:
Nanotechnology Advancement in Agro-Food Industry
  • 128 Accesses

Abstract

In recent years, there has been a substantial increase in the amount of focus placed on the utilization of nanocarriers as a novel technique for the delivery of phytochemicals in food. The potential of nanocarriers to improve the stability, targeting ability, bioavailability, and therapeutic efficacy of phytochemicals is the primary topic of this chapter. We examined the several nano-based carriers that are used for the onsite delivery of phytochemicals, focusing on their capacity to increase bioavailability and stability. In addition, the metabolic processes of phytochemicals when they are in the presence of nanocarriers are investigated, which sheds light on the possible interactions and changes that take place. In addition, the antimicrobial actions of phytochemicals as well as the health advantages connected with them are investigated, which provides insights into the prospective applications of these compounds. In general, this chapter gives a complete overview regarding nanocarriers application for the efficient delivery of phytochemicals in food and gives prospective pathways for increasing the functional characteristics and health-promoting impacts of these phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, R., et al., Phytochemical delivery through nanocarriers: a review. Colloids and Surfaces B: Biointerfaces, 2021. 197: p. 111389.

    Article  CAS  PubMed  Google Scholar 

  2. Conte, R., et al., Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. International Journal of Molecular Sciences, 2017. 18(4): p. 709.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manickam, V., et al., Nanotechnology in Delivery and Targeting of Phytochemicals, in Nanopharmaceuticals: Principles and Applications Vol. 2, V.K. Yata, et al., Editors. 2021, Springer International Publishing: Cham. p. 211–264.

    Google Scholar 

  4. Son, Y.-R., et al., Bioefficacy of Graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes. Food & function, 2016. 7(2): p. 861–871.

    Article  CAS  Google Scholar 

  5. **ao, J., Y. Cao, and Q. Huang, Edible nanoencapsulation vehicles for oral delivery of phytochemicals: A perspective paper. Journal of agricultural and food chemistry, 2017. 65(32): p. 6727–6735.

    Article  CAS  PubMed  Google Scholar 

  6. Sechene Stanley, G., Potential Adverse Effects of Alteration of Phytochemical Accumulation in Fruits and Vegetables, in Phytochemicals, A. Toshiki and A. Md, Editors. 2018, IntechOpen: Rijeka. p. Ch. 11.

    Google Scholar 

  7. Rudramurthy, G.R., et al., Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 2016. 21(7): p. 836.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martínez-Ballesta, M., et al., Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods, 2018. 7(5): p. 72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jahangirian, H., et al., A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International journal of nanomedicine, 2017. 12: p. 2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. **e, Y., et al., Phytonanomaterials as therapeutic agents and drug delivery carriers. Advanced Drug Delivery Reviews, 2021. 176: p. 113868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. **ao, J., Phytochemicals in food and nutrition. Critical reviews in food science and nutrition, 2016. 56(sup1): p. S1–S3.

    Article  PubMed  Google Scholar 

  12. McClements, D.J., Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology advances, 2020. 38: p. 107287.

    Article  CAS  PubMed  Google Scholar 

  13. Boon, C.S., et al., Factors influencing the chemical stability of carotenoids in foods. Critical reviews in food science and nutrition, 2010. 50(6): p. 515–532.

    Article  CAS  PubMed  Google Scholar 

  14. Elegbede, J.L., et al., Interactions Between Flavonoid‐Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems. Journal of food science, 2018. 83(5): p. 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  15. Akbarzadeh, A., et al., Liposome: classification, preparation, and applications. Nanoscale research letters, 2013. 8(1): p. 1–9.

    Article  Google Scholar 

  16. Gugleva, V., et al., Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals, 2021. 14(9): p. 837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Narayanan, N.K., et al., Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer, 2009. 125(1): p. 1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, M., et al., Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct, 2019. 10(10): p. 6447–6458.

    Article  CAS  PubMed  Google Scholar 

  19. Malekar, S.A., et al., The localization of phenolic compounds in liposomal bilayers and their effects on surface characteristics and colloidal stability. AAPS PharmSciTech, 2016. 17(6): p. 1468–1476.

    Article  CAS  PubMed  Google Scholar 

  20. Singh, M., et al., Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. Journal of Microencapsulation, 2019. 36(3): p. 215–235.

    Article  CAS  PubMed  Google Scholar 

  21. Tian, J., et al., A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv, 2014. 21(7): p. 553–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rajera, R., et al., Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin, 2011. 34(7): p. 945–953.

    Article  CAS  PubMed  Google Scholar 

  23. Junyaprasert, V.B., et al., Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. International journal of pharmaceutics, 2012. 423(2): p. 303–311.

    Article  CAS  PubMed  Google Scholar 

  24. Raafat, K.M. and S.A. El-Zahaby, Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chinese Medicine, 2020. 15(1): p. 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Binesh, A., S.N. Devaraj, and D. Halagowder, Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life sciences, 2018. 196: p. 28–37.

    Article  CAS  PubMed  Google Scholar 

  26. Hajizadeh, M.R., et al., Diosgenin-loaded niosome as an effective phytochemical nanocarrier: physicochemical characterization, loading efficiency, and cytotoxicity assay. Daru, 2019. 27(1): p. 329–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajput, S., et al., Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life sciences, 2013. 93(21): p. 783–790.

    Article  CAS  PubMed  Google Scholar 

  28. Barani, M., et al., Evaluation of Carum-loaded Niosomes on Breast Cancer Cells:Physicochemical Properties, In Vitro Cytotoxicity, Flow Cytometric, DNA Fragmentation and Cell Migration Assay. Scientific Reports, 2019. 9(1): p. 7139.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Semalty, A., et al., Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia, 2010. 81(5): p. 306–314.

    Article  CAS  PubMed  Google Scholar 

  30. Raeiszadeh, M., et al., Phytoniosome: a Novel Drug Delivery for Myrtle Extract. Iran J Pharm Res, 2018. 17(3): p. 804–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shukla, A., V. Mishra, and P. Kesharwani, Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug discovery today, 2016. 21(6): p. 888–899.

    Article  CAS  PubMed  Google Scholar 

  32. Matloub, A.A., et al., Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Development and Industrial Pharmacy, 2018. 44(4): p. 523–534.

    Article  CAS  PubMed  Google Scholar 

  33. Tammina, S.K., et al., High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe3+ ions and temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019. 222: p. 117141.

    Article  CAS  PubMed  Google Scholar 

  34. Gordillo-Galeano, A. and C.E. Mora-Huertas, Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2018. 133: p. 285–308.

    Article  CAS  PubMed  Google Scholar 

  35. Ramesh, N. and A.K.A. Mandal, Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model. Drug development and industrial pharmacy, 2019.

    Google Scholar 

  36. Naseri, N., H. Valizadeh, and P. Zakeri-Milani, Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin, 2015. 5(3): p. 305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Radhakrishnan, R., et al., Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids, 2016. 198: p. 51–60.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai, T.-H., et al., Clove extract and eugenol suppress inflammatory responses elicited by Propionibacterium acnes in vitro and in vivo. Food and Agricultural Immunology, 2017. 28(5): p. 916–931.

    Article  CAS  Google Scholar 

  39. Garg, A. and S. Singh, Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine, 2014. 9(8): p. 1223–1238.

    Article  CAS  PubMed  Google Scholar 

  40. Shrotriya, S., et al., Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artificial Cells, Nanomedicine, and Biotechnology, 2018. 46(7): p. 1471–1482.

    Article  CAS  PubMed  Google Scholar 

  41. Ji, S.-r., et al., Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2010. 1806(1): p. 29–35.

    Google Scholar 

  42. Kim, B., et al., Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. International Journal of Molecular Sciences, 2021. 22(7): p. 3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H., et al., Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Delivery, 2014. 21(5): p. 379–387.

    Article  CAS  PubMed  Google Scholar 

  44. Kam, N.W.S., Z. Liu, and H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angewandte Chemie International Edition, 2006. 45(4): p. 577–581.

    Article  CAS  PubMed  Google Scholar 

  45. Li, H., et al., Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv, 2019. 26(1): p. 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yanagi, K., Y. Miyata, and H. Kataura, Highly Stabilized β-Carotene in Carbon Nanotubes. Advanced Materials, 2006. 18(4): p. 437–441.

    Article  CAS  Google Scholar 

  47. Yallappa, S., et al., Phytochemically Functionalized Cu and Ag Nanoparticles Embedded in MWCNTs for Enhanced Antimicrobial and Anticancer Properties. Nano-Micro Letters, 2016. 8(2): p. 120–130.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, M., et al., N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater Sci Eng C Mater Biol Appl, 2018. 89: p. 274–282.

    Article  CAS  PubMed  Google Scholar 

  49. Huang, D. and D. Wu, Biodegradable dendrimers for drug delivery. Materials Science and Engineering: C, 2018. 90: p. 713–727.

    Article  CAS  PubMed  Google Scholar 

  50. Tripathy, S. and M.K. Das, Dendrimers and their applications as novel drug delivery carriers. Journal of Applied Pharmaceutical Science, 2013. 3(9): p. 142–149.

    Google Scholar 

  51. Kurtoglu, Y.E., et al., Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. International journal of pharmaceutics, 2010. 384(1–2): p. 189–194.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, S., et al., Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style. Biomaterials, 2010. 31(6): p. 1360–1371.

    Article  CAS  PubMed  Google Scholar 

  53. Madaan, K., V. Lather, and D. Pandita, Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Delivery, 2016. 23(1): p. 254–262.

    Article  CAS  PubMed  Google Scholar 

  54. Yousefi, M., A. Narmani, and S.M. Jafari, Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 2020. 278: p. 102125.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, L., et al., Encapsulation of curcumin within poly (amidoamine) dendrimers for delivery to cancer cells. Journal of Materials Science: Materials in Medicine, 2013. 24: p. 2137–2144.

    CAS  PubMed  Google Scholar 

  56. Chauhan, A.S., Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Annals of the New York Academy of Sciences, 2015. 1348(1): p. 134–140.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Q., et al., Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food chemistry, 2016. 213: p. 260–267.

    Article  PubMed  Google Scholar 

  58. Abdou, E.M. and M.M. Masoud, Gallic acid–PAMAM and gallic acid–phospholipid conjugates, physicochemical characterization and in vivo evaluation. Pharmaceutical development and technology, 2018. 23(1): p. 55–66.

    Article  CAS  PubMed  Google Scholar 

  59. Cruz, L., et al., Impact of a water‐soluble gallic acid‐based dendrimer on the color‐stabilizing mechanisms of anthocyanins. Chemistry–A European Journal, 2019. 25(50): p. 11696–11706.

    Google Scholar 

  60. Gupta, L., et al., Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. International journal of pharmaceutics, 2017. 528(1–2): p. 88–99.

    Article  CAS  PubMed  Google Scholar 

  61. Chen, W., et al., Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. Aaps Pharmscitech, 2011. 12: p. 705–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Laskar, P., et al., Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019. 11(42): p. 20058–20071.

    Article  CAS  PubMed  Google Scholar 

  63. Narmani, A., et al., Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug development research, 2019. 80(4): p. 404–424.

    Article  CAS  PubMed  Google Scholar 

  64. Mishra, V., U. Gupta, and N. Jain, Influence of different generations of poly (propylene imine) dendrimers on human erythrocytes. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2010. 65(12): p. 891–895.

    CAS  Google Scholar 

  65. Kesharwani, P., R.K. Tekade, and N.K. Jain, Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharmaceutical research, 2015. 32: p. 1438–1450.

    Article  CAS  PubMed  Google Scholar 

  66. Shao, N., et al., Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. International journal of nanomedicine, 2011: p. 3361–3372.

    Google Scholar 

  67. Matea, C.T., et al., Quantum dots in imaging, drug delivery and sensor applications. International journal of nanomedicine, 2017. 12: p. 5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumari, A., S.K. Khare, and J. Kundu, Adverse effect of CdTe quantum dots on the cell membrane of Bacillus subtilis: Insight from microscopy. Nano-Structures & Nano-Objects, 2017. 12: p. 19–26.

    Article  CAS  Google Scholar 

  69. Zhang, Y., Allyl isothiocyanate as a cancer chemopreventive phytochemical. Molecular nutrition & food research, 2010. 54(1): p. 127–135.

    Article  CAS  Google Scholar 

  70. Liu, P., et al., Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Scientific Reports, 2018. 8(1): p. 1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Q., et al., Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthc Mater, 2013. 2(3): p. 459–66.

    Article  CAS  PubMed  Google Scholar 

  72. Kaul, T.N., E. Middleton Jr., and P.L. Ogra, Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 1985. 15(1): p. 71–79.

    Article  CAS  PubMed  Google Scholar 

  73. Jeyadevi, R., et al., Enhancement of anti arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats. Colloids and Surfaces B: Biointerfaces, 2013. 112: p. 255–263.

    Article  CAS  PubMed  Google Scholar 

  74. Ghanbari, N., et al., Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102137.

    Article  CAS  Google Scholar 

  75. Pinilla-Peñalver, E., et al., Graphene quantum dots an efficient nanomaterial for enhancing the photostability of trans-resveratrol in food samples. Food Chemistry, 2022. 386: p. 132766.

    Article  PubMed  Google Scholar 

  76. Banik, B.L., P. Fattahi, and J.L. Brown, Polymeric nanoparticles: the future of nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016. 8(2): p. 271–299.

    PubMed  Google Scholar 

  77. Nigam, K., et al., Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug delivery and translational research, 2019. 9: p. 879–890.

    Article  CAS  PubMed  Google Scholar 

  78. Bitencourt, P.E.R., et al., A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: Phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Industrial Crops and Products, 2016. 83: p. 400–407.

    Article  CAS  Google Scholar 

  79. Prabhu, D., et al., Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 2013. 48(2): p. 317–324.

    Google Scholar 

  80. Tabatabaei Mirakabad, F.S., et al., A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 2016. 44(1): p. 423–430.

    Article  CAS  PubMed  Google Scholar 

  81. Jung, K.-H., et al., Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. International Journal of Pharmaceutics, 2015. 478(1): p. 251–257.

    Article  CAS  PubMed  Google Scholar 

  82. Umerska, A., et al., Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants (Basel), 2018. 7(4).

    Google Scholar 

  83. Udompornmongkol, P. and B.-H. Chiang, Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of Biomaterials Applications, 2015. 30(5): p. 537–546.

    Article  CAS  PubMed  Google Scholar 

  84. Oyeyemi, O., et al., Curcumin-Artesunate Based Polymeric Nanoparticle; Antiplasmodial and Toxicological Evaluation in Murine Model. Frontiers in Pharmacology, 2018. 9.

    Google Scholar 

  85. Debnath, K., N.R. Jana, and N.R. Jana, Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS Applied Bio Materials, 2019. 2(12): p. 5298–5305.

    Article  CAS  PubMed  Google Scholar 

  86. Sunoqrot, S. and L. Abujamous, pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. Journal of Drug Delivery Science and Technology, 2019. 52: p. 670–676.

    Article  CAS  Google Scholar 

  87. Kuppusamy, P., et al., Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharmaceutical Journal, 2016. 24(4): p. 473–484.

    Article  PubMed  Google Scholar 

  88. Ahmed, S., et al., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 2016. 7(1): p. 17–28.

    Article  CAS  PubMed  Google Scholar 

  89. Koduru, J.R., et al., Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Advances in Colloid and Interface Science, 2018. 256: p. 326–339.

    Article  CAS  PubMed  Google Scholar 

  90. Giordani, B., et al., Utilizing Liposomal Quercetin and Gallic Acid in Localized Treatment of Vaginal Candida Infections. Pharmaceutics, 2020. 12(1): p. 9.

    Article  CAS  Google Scholar 

  91. Almeida, T.C., et al., Polymeric micelles containing resveratrol: development, characterization, cytotoxicity on tumor cells and antimicrobial activity. Brazilian Journal of Pharmaceutical Sciences, 2020. 56.

    Google Scholar 

  92. Narayanan, S., et al., Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(6): p. 1399–1406.

    Google Scholar 

  93. Abderrezak, A., et al., Dendrimers bind antioxidant polyphenols and cisplatin drug. PloS one, 2012. 7(3): p. e33102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ahmad, M., et al., Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently control fusarium wilt disease of tomato. Front Bioeng Biotechnol, 2022. 10: p. 988607.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Alghamdi, M.D., et al., ZnO Nanocomposites of Juniperus procera and Dodonaea viscosa Extracts as Antiproliferative and Antimicrobial Agents. Nanomaterials, 2022. 12(4): p. 664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dube, A., J.A. Nicolazzo, and I. Larson, Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences, 2010. 41(2): p. 219–225.

    Article  CAS  PubMed  Google Scholar 

  97. Cui, D., et al., Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Materials Science and Engineering: C, 2018. 90: p. 104–112.

    Article  CAS  PubMed  Google Scholar 

  98. He, M., et al., Folate-decorated arginine-based poly(ester urea urethane) nanoparticles as carriers for gambogic acid and effect on cancer cells. Journal of Biomedical Materials Research Part A, 2017. 105(2): p. 475–490.

    Article  CAS  PubMed  Google Scholar 

  99. Govindaraju, S., et al., Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. International Journal of Nanomedicine, 2019. 14: p. 5147–5157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, R.-F.S., et al., Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. International journal of nanomedicine, 2015. 10: p. 2823.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Kumar, S. (2023). Nanocarriers as a Novel Approach for Phytochemical Delivery in Food. In: Nanotechnology Advancement in Agro-Food Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-5045-4_7

Download citation

Publish with us

Policies and ethics

Navigation