Genetic Improvement of Pea (Pisum sativum L.) for Food and Nutritional Security

  • Chapter
  • First Online:
Genetic Engineering of Crop Plants for Food and Health Security

Abstract

Pisum sativum L. (2n = 14) belongs to family Fabaceae and is considered as an important cool-season legume grain crop and green vegetable globally known for its protein-rich seeds, which are used as food and feed. Although, pea is regarded as the genetic model that led to the discovery on ‘Laws of Genetics’, studies on pea in this era of genomics has lagged behind than other major legumes because of its complicated and large genome. The increasing effects of climate change, combined with a growing global population, pose significant challenges to global food security. Therefore, dedicated research and development efforts utilizing omics resources and omics-based techniques are required to support the rapid development of high-yielding pea varieties that are tolerant and resistant to multiple stresses and meet the expanding productivity and quality demands. This chapter provides an overview of genomic tool advancements, such as the establishment of reference genomes, high-throughput genoty** assays, genetic resource databases, transcriptomics, and proteomic advancements, reliable linked DNA markers, comprehensive genetic maps, and marker-assisted breeding, which offer enormous potential for the introgression of candidates genes/QTLs from various sources to accelerate genetic progress in pea. In addition, we present a few representative success stories in which efforts were made to improve quality traits such as starch, protein, antinutritional compounds, and micronutrient concentration in pea. Furthermore, emerging techniques such as transgenics and genome editing (CRISPR/Cas) have great potential and new opportunities to create novel gene combinations to overcome different stress-mediated losses and revolutionize pea breeding. This chapter summarizes progress in pea improvement and outlines future directions for increasing pea productivity through the use of advanced genomic tools and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Saeed W, Naseem S, Ahmad F, Akrem A, Yasmeen N, Jacobsen HJ (2018) Phenotypic evaluation of transgenic peas (Pisum sativum L.) harboring AtNHX1 demonstrates stable gene expression and conserved morphology in subsequent generations. Turk J Bot 42(2):150–158

    Article  CAS  Google Scholar 

  • Amarakoon D, Sen GD, McPhee K, DeSutter T, Thavarajah P (2015) Genetic and environmental variation of seed iron and food matrix factors of North-Dakota-grown field peas (Pisum sativum L.). J Food Compos Anal 37:67–74

    Article  Google Scholar 

  • Ashtari MR, Kumar A, Elias EM, Fiedler JD, Porter LD, McPhee KE (2020) Analysis and identification of QTL for resistance to Sclerotinia sclerotiorum in pea (Pisum sativum L.). Front Genet 11:587968

    Article  Google Scholar 

  • Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani S, Kaur N, Singh J, Kesarwani AK, Tiwari S (2022) Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana. J Exp Bot 73(11):3401–3416. https://doi.org/10.1093/jxb/erac042

    Article  CAS  Google Scholar 

  • Bahrman N, Hascoët E, Jaminon O, Dépta F, Hû J-F, Bouchez O, Lejeune-Hénaut I, Delbreil B, Legrand S (2019) Identification of genes differentially expressed in response to cold in Pisum sativum using RNA sequencing analyses. Plan Theory 8(8):288

    CAS  Google Scholar 

  • Baldwin L, Domon J-M, Klimek JF, Fournet F, Sellier H, Gillet F, Pelloux J, Lejeune-Hénaut I, Carpita NC, Rayon C (2014) Structural alteration of cell wall pectins accompanies pea development in response to cold. Phytochemistry 104:37–47

    Article  CAS  PubMed  Google Scholar 

  • Bani M, Pérez-De-Luque A, Rubiales D, Rispail N (2018) Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f. sp. pisi in pea. Front Plant Sci 9:199

    Google Scholar 

  • Barakate A, Stephens J (2016) An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant–pathogen interactions for better crop protection. Front Plant Sci 7:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D (2018) A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance. Front Plant Sci 9:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Barilli E, Carrillo-Perdomo E, Cobos MJ, Kilian A, Carling J, Rubiales D (2020) Identification of potential candidate genes controlling pea aphid tolerance in a Pisum fulvum high-density integrated DArTseq SNP-based genetic map. Pest Manag Sci 76(5):1731–1742

    Article  CAS  PubMed  Google Scholar 

  • Bashar KK, Tareq MZ, Amin MR, Honi U, Tahjib-Ul-Arif M, Sadat MA, Hossen QMM (2019) Phytohormone-mediated stomatal response, escape and quiescence strategies in plants under flooding stress. Agronomy 9(2):43

    Article  CAS  Google Scholar 

  • Beji S, Fontaine V, Devaux R, Thomas M, Negro SS, Bahrman N, Siol M, Aubert G, Burstin J, Hilbert J-L (2020) Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. BMC Genomics 21(1):1–21

    Article  Google Scholar 

  • Bhardwaj D, Sahoo RK, Naqvi AR, Lakhanpaul S, Tuteja N (2020) Pea Gβ subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. Protoplasma 257:1639–1654

    Article  CAS  PubMed  Google Scholar 

  • Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, Shah AA, Agrawal A, Bhat B, Sofi PA, Masi A (2022) Low temperature stress tolerance: an insight into the omics approaches for legume crops. Front Plant Sci 13:888710

    Article  PubMed  PubMed Central  Google Scholar 

  • Birk Y (1985) The Bowman-Birk inhibitor. Trypsin-and chymotrypsin-inhibitor from soybeans. Int J Pept Protein Res 25(2):113–131

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics-and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    Article  CAS  PubMed  Google Scholar 

  • Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourgeois M, Jacquin F, Cassecuelle F, Savois V, Belghazi M, Aubert G, Quillien L, Huart M, Marget P, Burstin J (2011) A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11(9):1581–1594

    Article  CAS  PubMed  Google Scholar 

  • Brummer Y, Kaviani M, Tosh SM (2015) Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res Int 67:117–125

    Article  CAS  Google Scholar 

  • Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS National Plant Germplasm System. Crop Sci 58(2):451–468

    Article  Google Scholar 

  • Carrillo E, Rubiales D, Castillejo MA (2014) Proteomic analysis of pea (Pisum sativum L.) response during compatible and incompatible interactions with the pea aphid (Acyrthosiphon pisum H.). Plant Mol Biol Report 32:697–718

    Article  CAS  Google Scholar 

  • Castillejo MÁ, Fernandez-Aparicio M, Rubiales D (2012) Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J Exp Bot 63(1):107–119

    Article  CAS  PubMed  Google Scholar 

  • Castillejo M-A, Fondevilla-Aparicio S, Fuentes-Almagro C, Rubiales D (2020) Quantitative analysis of target peptides related to resistance against Ascochyta blight (Peyronellaea pinodes) in pea. J Proteome Res 19(3):1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Charfeddine M, Bouaziz D, Charfeddine S, Hammami A, Ellouz ON, Bouzid RG (2015) Overexpression of dehydration-responsive element-binding 1 protein (DREB1) in transgenic Solanum tuberosum enhances tolerance to biotic stress. Plant Biotechnol Rep 9:79–88

    Article  Google Scholar 

  • Chaturvedi S, Chaudhary R, Tiwari S (2021a) Contribution of crop biofortification in mitigating vitamin deficiency globally. Genome Eng Crop Improv:112–130. https://doi.org/10.1002/9781119672425.ch7

  • Chaturvedi S, Khan S, Usharani TR, Tiwari S (2021b) Analysis of TCP transcription factors revealed potential roles in plant growth and Fusarium oxysporum F. Sp. Cubense tolerance in banana (cv. Rasthali)

    Google Scholar 

  • Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S (2022) Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. Physiol Mol Biol Plants 28(4):871–884. https://doi.org/10.1007/s12298-022-01172-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi S, Thakur N, Khan S, Sardar MK, Jangra A, Tiwari S (2023) Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana. Int J Biol Macromol 237(December 2022):124124. https://doi.org/10.1016/j.ijbiomac.2023.124124

  • Chaudhary R, Chaturvedi S, Sharma R, Tiwari S (2020) Global scenario of vitamin deficiency and human health. Adv Agri-Food Biotechnol.:199–220. https://doi.org/10.1007/978-981-15-2874-3_9

  • Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Kuester H, Leubner-Metzger G, Kranner I (2013) Transcriptome-wide map** of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One 8(10):e78471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, ten Tusscher K, Sasidharan R, Dekker S, de Boer H (2022) Parallels between drought and flooding: an integrated framework for plant eco-physiological responses to water stress. Authorea Prepr

    Google Scholar 

  • Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ (2015) Association map** of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 35:1–13

    Article  Google Scholar 

  • Choudhary AK, Kumar J, Gupta S, Sultana R, Singh IS (2016) Breeding for adaptive traits in pulses. In: Proceedings of the National Conference on Bringing Self-Sufficiency in Pulses for Eastern India, Kanpur, India; pp 5–6

    Google Scholar 

  • Clemente A, Arques MC, Dalmais M, Le Signor C, Chinoy C, Olias R, Rayner T, Isaac PG, Lawson DM, Bendahmane A (2015) Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea. PLoS One 10(8):e0134634

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyne CJ, Porter LD, Boutet G, Ma Y, McGee RJ, Lesné A, Baranger A, Pilet-Nayel M-L (2019) Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol 19(1):1–8

    Article  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, De Oliveira Y, Guichard C (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:1–12

    Article  Google Scholar 

  • Dambrine É (2018) Soil acidity and acidification. Soils as a Key Compon Crit Zo 5. Degrad Rehabil 5:83–95

    Google Scholar 

  • Das A, Sharma N, Prasad M (2019) CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. Front Plant Sci 9:2008

    Article  PubMed  PubMed Central  Google Scholar 

  • de Almeida Costa GE, da Silva Q-MK, Reis SMPM, de Oliveira AC (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94(3):327–330

    Article  Google Scholar 

  • Demirbas A (2018) Micro and macronutrients diversity in Turkish pea (Pisum sativum) germplasm. Int J Agric Biol 20(4):701–710

    CAS  Google Scholar 

  • Desgroux A, L’anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ (2016) Genome-wide association map** of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:1–21

    Article  Google Scholar 

  • Desgroux A, Baudais VN, Aubert V, Le Roy G, De Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A (2018) Comparative genome-wide-association map** identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea. Front Plant Sci 8:2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:1–14

    Article  Google Scholar 

  • Domoney C, Knox M, Moreau C, Ambrose M, Palmer S, Smith P, Christodoulou V, Isaac PG, Hegarty M, Blackmore T, Swain M (2013) Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics. Funct Plant Biol 40(12):1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant J-P, Pichon J-P (2014) Transcriptome sequencing for high throughput SNP development and genetic map** in Pea. BMC Genomics 15:1–15

    Article  Google Scholar 

  • Dumont E, Bahrman N, Goulas E, Valot B, Sellier H, Hilbert J-L, Vuylsteker C, Lejeune-Hénaut I, Delbreil B (2011) A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci 180(1):86–98

    Article  CAS  PubMed  Google Scholar 

  • Ellis N, Hattori C, Cheema J, Donarski J, Charlton A, Dickinson M, Venditti G, Kaló P, Szabó Z, Kiss GB, Domoney C (2018) NMR metabolomics defining genetic variation in pea seed metabolites. Front Plant Sci 9:1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyraud V, Karaki L, Rahioui I, Sivignon C, Da Silva P, Rahbé Y, Royer C, Gressent F (2013) Expression and biological activity of the cystine knot bioinsecticide PA1b (Pea Albumin 1 Subunit b). PLoS One 8(12):e81619

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hussain M, Ul-Allah S, Siddique KHM (2019) Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric Water Manag 219:95–108

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2007) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Ascochyta blights grain Legum. Eur J Plant Pathol. 119:53–58

    Article  Google Scholar 

  • Fondevilla S, Küster H, Kra**ski F, Cubero JI, Rubiales D (2011a) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12(1):1–15

    Article  Google Scholar 

  • Fondevilla S, Almeida NF, Satovic Z, Rubiales D, Vaz Patto MC, Cubero JI, Torres AM (2011b) Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182:43–52

    Article  Google Scholar 

  • Fondevilla S, Martín-Sanz A, Satovic Z, Fernández-Romero MD, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186:805–812

    Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2014) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol Biol Report 32:258–269

    Article  CAS  Google Scholar 

  • Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8):1–10

    Article  Google Scholar 

  • Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber APM (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:1–16

    Article  Google Scholar 

  • Gali KK, Liu Y, Sindhu A, Diapari M, Shunmugam ASK, Arganosa G, Daba K, Caron C, Lachagari RVB, Tar’an B (2018) Construction of high-density linkage maps for map** quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18(1):1–25

    Article  Google Scholar 

  • Gali KK, Sackville A, Tafesse EG, Lachagari VBR, McPhee K, Hybl M, Mikić A, Smýkal P, McGee R, Burstin J (2019) Genome-wide association map** for agronomic and seed quality traits of field pea (Pisum sativum L.). Front Plant Sci 10:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • García MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcántara E, Pérez-Vicente R (2013) Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. Planta 237:65–75

    Article  PubMed  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for develo** powdery mildew resistant pea cultivars. Euphytica 186:593–607

    Article  CAS  Google Scholar 

  • Gowda CLL, Chaturvedi SK, Gaur PM, Sameer Kumar CV, Jukanti AK (2015) Pulses research and development strategies for India

    Google Scholar 

  • Grimaud F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq A-S, Sellier H, Bahrman N, Lejeune-Hénaut I, Delbreil B (2013) Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteome 80:145–159

    Article  CAS  Google Scholar 

  • Guillamón E, Pedrosa MM, Burbano C, Cuadrado C, de Cortes SM, Muzquiz M (2008) The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem 107(1):68–74

    Article  Google Scholar 

  • Guindon MF, Cazzola F, Palacios T, Gatti I, Bermejo C, Cointry E (2021) Biofortification of pea (Pisum sativum L.): a review. J Sci Food Agric 101(9):3551–3563

    Article  CAS  PubMed  Google Scholar 

  • Gurmani AR, Wang X, Rafique M, Jawad M, Khan AR, Khan QU, Ahmed R, Fiaz S (2022) Exogenous application of gibberellic acid and silicon to promote salinity tolerance in pea (Pisum sativum L.) through Na+ exclusion. Saudi J Biol Sci 29(6):103305

    Article  Google Scholar 

  • Gusmao M, Siddique KH, Flower K, Nesbitt H, Veneklaas EJ (2012) Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci 198(6):430–441

    Article  Google Scholar 

  • Habib SH, Kausar H, Saud HM, Ismail MR, Othman R (2016) Molecular characterization of stress tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. Int J Agric Biol 18:184–191

    Article  CAS  Google Scholar 

  • Hameed RA (2018) Pisum sativum L. A biotic stress tolerance, genomic and in vitro approach. J Pharm Sci Res 10(10):2480–2483

    CAS  Google Scholar 

  • Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol 19(1):1–26

    Article  CAS  Google Scholar 

  • Huang S, Gali KK, Tar’an B, Warkentin TD, Bueckert RA (2017) Pea phenology: crop potential in a warming environment. Crop Sci 57(3):1540–1551

    Article  CAS  Google Scholar 

  • Huang S, Gali KK, Arganosa GC, Tar’an B, Bueckert RA, Warkentin TD (2023) Breeding indicators for high-yielding field pea under normal and heat stress environments. Can J Plant Sci. https://doi.org/10.1139/cjps-2022-0158

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress-Plant Responses Applications Agric 13:169–205

    Google Scholar 

  • Hochmuth GJ (2019) Achieving sustainable cultivation of vegetables, 1st edn. Burleigh Dodds Science Publishing. https://doi.org/10.1201/9780429275456

    Book  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Report 33:1768–1778

    Article  Google Scholar 

  • Iglesias-García R, Prats E, Flores F, Amri M, Mikić A, Rubiales D (2017) Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop Pasture Sci 68(11):915–923

    Article  Google Scholar 

  • Jain S, Weeden NF, Porter LD, Eigenbrode SD, McPhee K (2013) Finding linked markers to En for efficient selection of pea enation mosaic virus resistance in pea. Crop Sci 53(6):2392–2399

    Article  Google Scholar 

  • Jain S, Weeden NF, Kumar A, Chittem K, McPhee K (2015) Functional codominant marker for selecting the Fw gene conferring resistance to Fusarium wilt race 1 in pea. Crop Sci 55(6):2639–2646

    Article  CAS  Google Scholar 

  • Jangra A, Chaturvedi S, Kumar N, Singh H, Sharma V, Thakur M, Tiwari S, Chhokar V (2022) Polyamines: the gleam of next-generation plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants—a systematic review. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10846-4

  • Jha AB, Tar’an B, Diapari M, Sindhu A, Shunmugam A, Bett K, Warkentin TD (2015) Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202:189–197

    Article  CAS  Google Scholar 

  • Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine map** of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha AB, Gali KK, Banniza S, Warkentin TD (2019) Validation of SNP markers associated with ascochyta blight resistance in pea. Can J Plant Sci 99(2):243–249

    Article  CAS  Google Scholar 

  • Jha AB, Gali KK, Zhang H, Purves RW, Tar’an B, Vandenberg A, Warkentin TD (2020) Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica 216:1–16

    Article  Google Scholar 

  • Jiang Y, Lahlali R, Karunakaran C, Kumar S, Davis AR, Bueckert RA (2015) Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ 38(11):2387–2397

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lindsay DL, Davis AR, Wang Z, MacLean DE, Warkentin TD, Bueckert RA (2020) Impact of heat stress on pod-based yield components in field pea (Pisum sativum L.). J Agron Crop Sci 206(1):76–89

    Article  Google Scholar 

  • Jiao K, Li X, Guo W, Su S, Luo D (2017) High-Throughput RNA-Seq data analysis of the single nucleotide polymorphisms (SNPs) and zygomorphic flower development in pea (Pisum sativum L.). Int J Mol Sci 18(12):2710

    Article  PubMed  PubMed Central  Google Scholar 

  • Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant 172(2):1106–1132

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic Z, Stanisavljevic N, Mikic A, Radovic S, Maksimovic V (2013) The expression of drought responsive element binding protein (‘DREB2A’) related gene from pea (‘Pisum sativum’L.) as affected by water stress. Aust J Crop Sci 7(10):1590–1596

    Google Scholar 

  • Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JCR (2012) Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 235:1409–1419

    Google Scholar 

  • Kahlon JG, Jacobsen H-J, Chatterton S, Hassan F, Bowness R, Hall LM (2018) Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM Crops Food 9(2):90–108

    Google Scholar 

  • Kaur N, Alok A, Shivani KP, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S (2020) CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 59(January):76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  • Kaushal N, Bhandari K, Siddique KHM, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2(1):1134380

    Google Scholar 

  • Khan MAH, Baset Mia MA, Quddus MA, Sarker KK, Rahman M, Skalicky M, Brestic M, Gaber A, Alsuhaibani AM, Hossain A (2022) Salinity-induced physiological changes in pea (Pisum sativum L.): germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants 11(24):3493

    Google Scholar 

  • Khan S, Kaur K, Kumar V, Tiwari S (2023) Iron transport and homeostasis in plants: current updates and applications for improving human nutrition values and sustainable agriculture. Plant Growth Regul. 100:1–18

    Article  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K, Huart M, Rivière N, Boutet G, Lejeune-Hénaut I (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330

    Article  PubMed  Google Scholar 

  • Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336

    Google Scholar 

  • Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51(9):1411–1422

    Article  CAS  PubMed  Google Scholar 

  • Kulaeva OA, Zhernakov AI, Afonin AM, Boikov SS, Sulima AS, Tikhonovich IA, Zhukov VA (2017) Pea Marker Database (PMD)–A new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 12(10):e0186713

    Google Scholar 

  • Kumari T, Deka SC (2021) Potential health benefits of garden pea seeds and pods: a review. Legum Sci 3(2):e82

    Article  CAS  Google Scholar 

  • Kwon SJ, Smýkal P, Hu J, Wang M, Kim S, McGee RJ, McPhee K, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea. Plant Breed 132(6):642–648

    Article  CAS  Google Scholar 

  • Lahuta LB, Szablińska-Piernik J, Horbowicz M (2022) Changes in metabolic profiles of pea (Pisum sativum L.) as a result of repeated short-term soil drought and subsequent re-watering. Int J Mol Sci 23(3):1704

    Google Scholar 

  • Lakshmana Reddy DC, Preethi B, Wani MA, Aghora TS, Aswath C, Mohan N (2015) Screening for powdery mildew (Erysiphe pisi DC) resistance gene-linked SCAR and SSR markers in five breeding lines of Pisum sativum L. J Hortic Sci Biotechnol 90(1):78–82

    Google Scholar 

  • Lamichaney A, Parihar AK, Hazra KK, Dixit GP, Katiyar PK, Singh D, Singh AK, Kumar N, Singh NP (2021) Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Front Plant Sci 12:635868

    Google Scholar 

  • Lavaud C, Lesné A, Piriou C, Le Roy G, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel M-L (2015) Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. Theor Appl Genet 128:2273–2288

    Article  CAS  PubMed  Google Scholar 

  • Le Trionnaire G, Tanguy S, Hudaverdian S, Gléonnec F, Richard G, Cayrol B, Monsion B, Pichon E, Deshoux M, Webster C (2019) An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. Insect Biochem Mol Biol 110:34–44

    Article  PubMed  Google Scholar 

  • Lee R-Y, Reiner D, Dekan G, Moore AE, Higgins TJV, Epstein MM (2013) Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice. PLoS One 8(1):e52972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejeune-Hénaut I, Hanocq E, Bethencourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ, Thomas M (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13(1):1–14

    Google Scholar 

  • Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E (2020) Does protein glycation impact on the drought-related changes in metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds? Int J Mol Sci 21(2):567

    Google Scholar 

  • Li J, Li H, Quan X, Shan Q, Wang W, Yin N, Wang S, Wang Z, He W (2022) Comprehensive analysis of cucumber C-repeat/dehydration-responsive element binding factor family genes and their potential roles in cold tolerance of cucumber. BMC Plant Biol 22(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Liu R, Xu R, Varshney RK, Ding H, Li M, Yan X, Huang S, Li J, Wang D (2023) Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J 11(1):132–139

    Google Scholar 

  • Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y (2015) Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci 6:1039

    Google Scholar 

  • Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province. China. Front Microbiol 7:481

    Google Scholar 

  • Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X (2017) Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 7(1):1–10

    Google Scholar 

  • Lockyer S, Nugent AP (2017) Health effects of resistant starch. Nutr Bull 42(1):10–41

    Article  Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P, Main D, McGee RJ (2017a) Genome-wide SNP identification, linkage map construction and QTL map** for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17(1):1–17

    Google Scholar 

  • Ma Y, Coyne CJ, Main D, Pavan S, Sun S, Zhu Z, Zong X, Leitão J, McGee RJ (2017b) Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.). Mol Breed 37:1–7

    Google Scholar 

  • Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7. https://doi.org/10.1093/aobpla/plv040

  • Manzoor S, Ahmad R, Shahzad M, Sajjad M, Khan N, Rashid U, Afroz A, Khan SA (2020) Salt stress reduces the pea growth and induces the expression of selected antioxidant genes. Pak J Agric Sci 57(2):393–399

    Google Scholar 

  • McPhee K (2003) Dry pea production and breeding: a minireview. J Food Agric Environ 1:64–69

    Google Scholar 

  • Moazzam-Jazi M, Ghasemi S, Seyedi SM, Niknam V (2018) COP1 plays a prominent role in drought stress tolerance in Arabidopsis and Pea. Plant Physiol Biochem 130:678–691

    Article  CAS  PubMed  Google Scholar 

  • Moisa C, Copolovici D, Lupitu A, Lazar L, Copolovici L (2019) Drought stress influence on pea plants (Pisum sativum L.). Sci Tech Bull Ser Chem Food Sci Eng 16:20–24

    Google Scholar 

  • Moore KL, Rodríguez-Ramiro I, Jones ER, Jones EJ, Rodríguez-Celma J, Halsey K, Domoney C, Shewry PR, Fairweather-Tait S, Balk J (2018) The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Sci Rep 8(1):1–11

    Google Scholar 

  • Moreau C, Hofer JMI, Eléouët M, Sinjushin A, Ambrose M, Skøt K, Blackmore T, Swain M, Hegarty M, Balanzà V (2018) Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum). New Phytol 220(1):288–299

    Google Scholar 

  • Nemeskéri E, Molnár K, Vígh R, Nagy J, Dobos A (2015) Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas (Pisum sativum L.) in dry seasons. Acta Physiol Plant 37:1–16

    Google Scholar 

  • Perfecto A, Rodriguez-Ramiro I, Rodriguez-Celma J, Sharp P, Balk J, Fairweather-Tait S (2018) Pea ferritin stability under gastric pH conditions determines the mechanism of iron uptake in Caco-2 cells. J Nutr 148(8):1229–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrović G, Jovičić D, Nikolić Z, Tamindžić G, Ignjatov M, Milošević D, Milošević B (2016) Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika-Belgrade 48(1):373–381

    Article  Google Scholar 

  • Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135(1):40–48

    Article  Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular map** for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    Article  PubMed  Google Scholar 

  • Rai R, Singh AK, Chand R, Srivastava CP, Joshi AK, Singh BD (2016) Genomic regions controlling components of resistance for pea rust caused by Uromyces fabae (Pers.) de-Bary. J Plant Biochem Biotechnol 25:133–141

    Article  CAS  Google Scholar 

  • Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, Warkentin T (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54(4):1698–1708

    Article  Google Scholar 

  • Rayner T, Moreau C, Ambrose M, Isaac PG, Ellis N, Domoney C (2017) Genetic variation controlling wrinkled seed phenotypes in Pisum: how lucky was Mendel? Int J Mol Sci 18(6):1205

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plan Theory 9(5):560

    CAS  Google Scholar 

  • Robinson GHJ, Balk J, Domoney C (2019) Improving pulse crops as a source of protein, starch and micronutrients. Nutr Bull 44(3):202–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roriz M, Carvalho SMP, Castro PML, Vasconcelos MW (2020) Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy 10(3):435

    Article  CAS  Google Scholar 

  • Rubiales D, González-Bernal MJ, Warkentin T, Bueckert R, Patto MCV, McPhee K, McGee R, Smykal P (2019) Advances in pea breeding. In: Achieving sustainable cultivation of vegetables. Burleigh Dodds Science Publishing, Cambridge, pp 575–606

    Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176(4):514–521

    Google Scholar 

  • Shah Z, Iqbal A, Khan FU, Khan HU, Durrani F, Ahmad MZ (2020) Genetic manipulation of pea (Pisum sativum L.) with Arabidopsis’s heat shock factor HsfA1d improves ROS scavenging system to confront thermal stress. Genet Resour Crop Evol 67:2119–2127

    Google Scholar 

  • Shailani A, Joshi R, Singla Pareek SL, Pareek A (2021a) Stacking for future: pyramiding genes to improve drought and salinity tolerance in rice. Physiol Plant 172(2):1352–1362

    Article  CAS  PubMed  Google Scholar 

  • Shailani A, Wungrampha S, Dkhar J, Singla-Pareek SL, Pareek A (2021b) Genetic improvement of rice for food and nutritional security. In: Genetically modified crops: current status, prospects and challenges, vol 1. Springer, Cham, pp 13–32

    Chapter  Google Scholar 

  • Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, UdayaKumar M (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep 7(1):2760

    Google Scholar 

  • Shunmugam AS, Liu X, Stonehouse R, Tar’An B, Bett KE, Sharpe AG, Warkentin TD (2015) Map** seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population. Crop Sci 55:828–836. https://doi.org/10.2135/cropsci2014.08.0544

    Article  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20(2):353

    Article  PubMed  PubMed Central  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson L-A, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M (2014) Gene-based SNP discovery and genetic map** in pea. Theor Appl Genet 127:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Rai R, Singh BD, Chand R, Srivastava CP (2015) Validation of SSR markers associated with rust (Uromyces fabae) resistance in pea (Pisum sativum L.). Physiol Mol Biol Plants 21:243–247

    Google Scholar 

  • Singh S, Chaudhary R, Deshmukh R, Tiwari S (2023) Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Mol Biol 111(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2(2):74–115

    Google Scholar 

  • Smýkal P, Trněný O, Brus J, Hanáček P, Rathore A, Das RR, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M (2018) Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS One 13(3):e0194056

    Google Scholar 

  • Stephen AM, Champ MM-J, Cloran SJ, Fleith M, Van Lieshout L, Mejborn H, Burley VJ (2017) Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev 30(2):149–190

    Article  CAS  PubMed  Google Scholar 

  • Stevenson EJ, Watson AW, Brunstrom JM, Corfe BM, Green MA, Johnstone AM, Williams EA (2018) Protein for life: towards a focussed dietary framework for healthy ageing. Nutr Bull 97:102

    Google Scholar 

  • Sun S, Deng D, Duan C, Zong X, Xu D, He Y, Zhu Z (2019) Two novel er1 alleles conferring powdery mildew (Erysiphe pisi) resistance identified in a worldwide collection of pea (Pisum sativum L.) germplasms. Int J Mol Sci 20(20):5071

    Google Scholar 

  • Swisher Grimm KD, Porter LD (2020) Development and validation of KASP markers for the identification of pea seedborne mosaic virus pathotype P1 resistance in Pisum sativum. Plant Dis 104(6):1824–1830

    Google Scholar 

  • Szablińska-Piernik J, Lahuta LB (2021) Metabolite profiling of semi-leafless pea (Pisum sativum L.) under progressive soil drought and subsequent re-watering. J Plant Physiol 256:153314

    Google Scholar 

  • Tafesse EG, Gali KK, Lachagari VBR, Bueckert R, Warkentin TD (2020) Genome-wide association map** for heat stress responsive traits in field pea. Int J Mol Sci 21(6):2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao A, Afshar RK, Huang J, Mohammed YA, Espe M, Chen C (2017) Variation in yield, starch, and protein of dry pea grown across Montana. Agron J 109(4):1491–1501

    Article  CAS  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306

    Google Scholar 

  • Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, Bérard A, Houtin H, Rond C, Kreplak J (2015) Development of two major resources for pea genomics: the GenoPea 13.2 K SNP Array and a high-density, high-resolution consensus genetic map. Plant J 84(6):1257–1273

    Article  CAS  PubMed  Google Scholar 

  • Teressa Negawo A, Baranek L, Jacobsen H-J, Hassan F (2016) Molecular and functional characterization of cry1Ac transgenic pea lines. GM Crops Food 7(3–4):159–174

    Google Scholar 

  • Thavarajah D, Lawrence TJ, Powers SE, Kay J, Thavarajah P, Shipe E, McGee R, Kumar S, Boyles R (2022) Organic dry pea (Pisum sativum L.) biofortification for better human health. PLoS One 17(1):e0261109

    Google Scholar 

  • Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C (2008) Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in develo** pea seeds. Plant Physiol 146(1):74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyse K, Pagter M, Zuther E, Hincha DK (2019) Deacclimation after cold acclimation—a crucial, but widely neglected part of plant winter survival. J Exp Bot 70(18):4595–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warkentin TD, Delgerjav O, Arganosa G, Rehman AU, Bett KE, Anbessa Y, Rossnagel B, Raboy V (2012) Development and characterization of low-phytate pea. Crop Sci 52(1):74–78

    Article  Google Scholar 

  • Warkentin TD, Smýkal P, Coyne CJ, Weeden N, Domoney C, Bing D-J, Leonforte A, Xuxiao Z, Dixit GP, Boros L (2015) Pea. Grain Legum, pp 37–83

    Google Scholar 

  • Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159(2):289–299

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Rubiales D, Fondevilla S (2016) Use of MACE technology to identify positional and expressional candidate genes for resistance to Didymella pinodes in pea. Second International Legume Society Conference

    Google Scholar 

  • Wu L, Chang K-F, Conner RL, Strelkov S, Fredua-Agyeman R, Hwang S-F, Feindel D (2018) Aphanomyces euteiches: a threat to Canadian field pea production. Engineering 4(4):542–551

    Article  CAS  Google Scholar 

  • Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J, Li L, He Y, Jiang J, Wang F (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10(10):e0139775

    Google Scholar 

  • Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, Varshney RK, Nguyen HT (2018) Genetic diversity of root system architecture in response to drought stress in grain legumes. J Exp Bot 69(13):3267–3277

    Article  CAS  PubMed  Google Scholar 

  • Yu K (2012) Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2012:493186

    Article  PubMed  Google Scholar 

  • Zaman MSU, Malik AI, Erskine W, Kaur P (2019) Changes in gene expression during germination reveal pea genotypes with either “quiescence” or “escape” mechanisms of waterlogging tolerance. Plant Cell Environ 42(1):245–258

    Article  CAS  PubMed  Google Scholar 

  • Zhukov VA, Zhernakov AI, Kulaeva OA, Ershov NI, Borisov AY, Tikhonovich IA (2015) De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int J Genomics 2015

    Google Scholar 

  • Zia MAB, Ul-Allah S, Sher A, Ijaz M, Sattar A, Yousaf MF, Chaudhry UK, Qayyum A (2023) Genomics for abiotic stress resistance in legumes. In: Sustainable agriculture in the era of the OMICs revolution. Springer, Cham, pp 327–342

    Chapter  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean basin. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology (DBT) and Biotechnology Industry Research Assistance Council (BIRAC), Government of India for research support and facilities. The present work is also supported through the India-Poland Joint Research Project (DST/INT/POL/P-45/2020) funded by Department of Science & Technology (DST), Government of India and Polish National Agency for Academic Exchange – NAWA (Poland) to Siddharth Tiwari. Authors acknowledge to DBT-eLibrary Consortium (Del-CON) for providing access to online journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H., Asija, S., Sharma, K., Koul, B., Tiwari, S. (2023). Genetic Improvement of Pea (Pisum sativum L.) for Food and Nutritional Security. In: Tiwari, S., Koul, B. (eds) Genetic Engineering of Crop Plants for Food and Health Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-5034-8_1

Download citation

Publish with us

Policies and ethics

Navigation