Heavy Metal Pollution in Water: Cause and Remediation Strategies

  • Chapter
  • First Online:
Current Status of Fresh Water Microbiology

Abstract

Heavy metals are naturally present in earth’s crust, and some of them are essential to living organisms for carrying out life processes. Due to their high persistence and nonbiodegradable nature, heavy metal accumulation beyond recommended concentrations may lead to hazardous effect on various life forms and environment. Contamination of water bodies may be due to natural and anthropogenic sources. Unchecked discharge from industrial sites and agricultural runoff in to adjoining water bodies makes the water unfit for human consumption. Escalating levels of these pollutants pose a threat to aquatic life forms and surrounding environment. Heavy metals can execute various health problems that may range from mild to severe. They can be toxic to living organisms at very low levels of exposure. Excessive usage of heavy metals has raised concerns over time, and consequently, their impact on the overall environment is being studied by researchers extensively. To safeguard human health and environment, proper management and greener technologies for removal of heavy metal from water bodies is required. This chapter will discuss the source, toxicity, and permitted concentrations of some of the major heavy metals in water bodies. Remediation approaches for mitigation of these toxic compounds have also been described. Physical and chemical remediation processes for heavy metal cleanup are highly expensive and sometimes generate a significant amount of secondary pollutants; therefore, the focus has now shifted toward eco-friendly approaches such as bioremediation and phytoremediation. Further research needs to be carried out to maximize the applicability of the existing techniques and develo** highly efficient technologies for heavy metal removal from water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas Ali A, Mohamed Sihabudeen M, Zahir Hussain A (2016) Biosorption of heavy metals by Pseudomonas bacteria. Int Res J Eng Technol 3(8):1446–1450

    Google Scholar 

  • Adler RA, Claassen M, Godfrey L, Turton AR (2007) Water, mining, and waste: an historical and economic perspective on conflict management in South Africa. Econ Peace Secur J 2(2):33–41. https://doi.org/10.15355/epsj.2.2.33

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2017) Lead toxicity. https://www.atsdr.cdc.gov

  • Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M et al (2015) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. CLEAN Soil Air Water 44:195–201

    Article  Google Scholar 

  • Ali Redha A (2020) Removal of heavy metals from aqueous media by biosorption. Arab J Basic Appl Sci 27(1):183–193

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  PubMed  Google Scholar 

  • Andrades-Moreno L, Cambrollé J, Figueroa ME, Mateos-Naranjo E (2013) Growth and survival, 739 of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar Pollut Bull 75(1–2):28–32

    Article  PubMed  Google Scholar 

  • Ansari TM, Marr IL, Tariq N (2003) Heavy metals in marine pollution perspective—a mini review. J Appl Sci 4(1):1–20. https://doi.org/10.3923/jas.2004.1.20

    Article  Google Scholar 

  • ARL: Cadmium toxicity (2016) Archived from the original on 9 September 2019. http://www.arltma.com

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Baby J, Raj JS, Biby ET, Sankarganesh P, Jeevitha MV, Ajisha SU, Rajan SS (2010) Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci 4(4):939–952

    Google Scholar 

  • Baghour M, Moreno DA, Hernández J, Castilla N, Romero L (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants. J Environ Sci Health Part A 36(7):1389–1401

    Article  Google Scholar 

  • Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 55(1):141–146

    Article  PubMed  Google Scholar 

  • Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P (2022) New insights into engineered plant-microbe interactions for pesticide removal. Chemosphere 309(2):136635

    Article  PubMed  Google Scholar 

  • Bielicka A, Bojanowska I, Wisniewski A (2005) Two faces of chromium-pollutant and bioelement. Pol J Environ Stud 14(1):5–10

    Google Scholar 

  • Bielmyer-Fraser GK, Patel P, Capo T, Grosell M (2018) Physiological responses of corals to oceanacidification and copper exposure. Mar Pollut Bull 133:781–790. https://doi.org/10.1016/j.marpolbul.2018.06.048

    Article  PubMed  Google Scholar 

  • Brown CJ, Eaton RA (2001) Toxicity of chromated copper arsenate (CCA)-treated wood to non-target marine fouling communities in Langstone Harbour, Portsmouth, UK. Mar Pollut Bull 42(4):310–318. https://doi.org/10.1016/s0025-326x(00)00156-9

    Article  PubMed  Google Scholar 

  • Cempel M, Nikel GJPJS (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15(3):375–382

    Google Scholar 

  • Chai M, Shi F, Li R, Qiu G, Liu F, Liu L (2014) Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant 36(3):745–754. https://doi.org/10.1007/s11738-013-1452-1

    Article  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    Google Scholar 

  • Chiarelli R, Roccheri MC (2014) Marine invertebrates as bioindicators of heavy metal pollution. Open J Metal 4(4):93–106. https://doi.org/10.4236/ojmetal.2014.44011

    Article  Google Scholar 

  • Clark RB (2001) Marine pollution. Oxford University Press, Oxford

    Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66(1):38–44. https://doi.org/10.1016/j.chemosphere.2006.05.041

    Article  PubMed  Google Scholar 

  • Das S, Patnaik SC, Sahu HK, Chakraborty A, Sudarshan M, Thatoi HN (2013) Heavy metal contamination, physio-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans Nonferrous Metals Soc China 23(2):484–493

    Article  Google Scholar 

  • Dash B, Sahu N, Singh AK, Gupta SB, Soni R (2021) Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol 66:189–196

    Article  Google Scholar 

  • De Pooter D (2013) Heavy metals. http://www.coastalwiki.org/wiki/Heavy_metals

  • Dhankhar R, Hooda A (2011) Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  PubMed  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinh N, van der Ent A, Mulligan DR, Nguyen AV (2018) Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ Exp Bot 147:1–12. https://doi.org/10.1016/j.envexpbot.2017.10.008

    Article  Google Scholar 

  • Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  • Dojlido J, Best GA (1993) Chemistry of water and water pollution. Ellis Horwood Limited

    Google Scholar 

  • Duan L, Song J, Li X, Yuan H, Xu S (2012) Dissolved inorganic tin sources and its coupling with eco-environments in Bohai Bay. Environ Monit Assess 184(3):1335–1349. https://doi.org/10.1007/s10661-011-2044-4

    Article  PubMed  Google Scholar 

  • Ducros V (1992) Chromium metabolism, a literature review. Biol Trace Elem Res 32:65–77. https://doi.org/10.1007/BF02784589

    Article  PubMed  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807

    Article  Google Scholar 

  • El-Sorogy AS, Youssef M, Al-Kahtany K, Al-Otaiby N (2016) Assessment of arsenic in coastalsediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia. J Afr Earth Sci 113:65–72. https://doi.org/10.1016/j.jafrearsci.2015.10.001

    Article  Google Scholar 

  • Environmental Protection Agency (2017). https://www.epa.gov/clean-air-act-overview/clean-airact-text

  • Esslemont G (1998) Heavy metals in the tissues and skeleton of scleractiniancorals. PhD thesis, Southern Cross University, Australia, p 257

    Google Scholar 

  • European Commission (2006) Decision of 12 October 2006 amending, for the purposes of adapting to technical progress, the Annex to Directive 2002/95/EC of the European Parliament and of the Council as regards exemptions for applications of lead and cadmium (notified under document number C (2006) 4790). (October 14, 2006). J Eur Union

    Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Heavy metals in water: presence, removal and safety. Royal Society of Chemistry, London

    Google Scholar 

  • Geisler CD, Schmidt D (1991) An overview of chromium in the marine environment. Deutsche Hydrographische Zeitschrift 44(4):185–196

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18

    Google Scholar 

  • Giga W (2009) The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment. Environ Sci Pollut Res Int 16(Suppl 1):S98–S111

    Google Scholar 

  • Gillmore ML, Gissi F, Golding LA, Stauber JL, Reichelt-Brushett AJ, Severati A et al (2020) Effects of dissolved nickel and nickel-contaminated suspended sediment on the scleractinian coral, Acropora muricata. Mar Pollut Bull 152:110886

    Article  PubMed  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1(1):14

    Google Scholar 

  • Gupta DC (1999) Environmental aspects of selected trace elements associated with coal and natural waters of Pench Valley coalfield of India and their impact on human health. Int J Coal Geol 40(2–3):133–149

    Article  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. https://doi.org/10.3109/10408449509089885

    Article  PubMed  Google Scholar 

  • Hattingh WHJ (1977) Reclaimed water: a health hazard? Water SA 3(2):104–112

    Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8(3):639–648. https://doi.org/10.1007/BF03326249

    Article  Google Scholar 

  • Huang JC, Suárez MC, Yang SI, Lin Z-Q, Terry N (2013) Development of a constructed wetland water treatment system for selenium removal: incorporation of an algal treatment component. Environ Sci Technol 47(18):10518–10525

    PubMed  Google Scholar 

  • Hussain J, Rao NP (2018) Status of trace and toxic metals in Indian Rivers. Ministry of Water Resources, Government of India, river data Compilation-2, vol 110066. Directorate Planning and Development Organization, New Delhi

    Google Scholar 

  • ILA: International Lead Association (2018) Lead in aquatic environments: understanding the science. https://www.ila-lead.org/responsibility/lead-in-aquatic-environments–understanding-the-science

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Curr Sci:888–894

    Google Scholar 

  • Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57(10):769–774. https://doi.org/10.1139/w11-062

    Article  PubMed  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Bei**g, China. Environ Pollut 152(3):686–692. https://doi.org/10.1016/j.envpol.2007.06.056

    Article  PubMed  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220. https://doi.org/10.1016/j.taap.2009.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  • Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939. https://doi.org/10.1134/S1064229314090075

    Article  Google Scholar 

  • Kumar P, Gupta SB, Anurag, Soni R (2019) Bioremediation of cadmium by mixed indigenous isolates Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 isolated from industrial and mining affected water samples. Pollution 5(2):351–360

    Google Scholar 

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32(11–12):514–520. https://doi.org/10.1007/s10295-005-0227-0

    Article  PubMed  Google Scholar 

  • Lefèvre I, Marchal G, Edmond GM, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol – sensitive and resistant cell lines in the Mediterranean halophyte species. Atriplex halimus L. J Plant Physiol 167(5):365–374

    Article  PubMed  Google Scholar 

  • Lenntech (2006) Heavy metals. http://www.lenntech.com/heavy-metals.htm

  • Llugany M, Miralles R, Corrales I, Barceló J, Poschenrieder C (2012) Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J Geochem Explor 123:122–127

    Article  Google Scholar 

  • Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31(1–3):44–54. https://doi.org/10.1016/0025-326X(95)00081-W

    Article  Google Scholar 

  • Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res GRANTHAALAYAH 3(9SE): 1–7. https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3282

  • Mains D, Craw D, Rufaut CG, Smith CM (2006) Phytostabilization of gold mine tailings, New Zealand. Part 1: plant establishment in alkaline saline substrate. Int J Phytoremediation 8(2):131–147

    Article  PubMed  Google Scholar 

  • Medinews direct (2009) Cadmium exposure can induce early atherosclerotic changes archived 15 March 2012 at the wayback machine

    Google Scholar 

  • Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorous co-limit nitrogen fixation in the eastern topical North Atlantic. Nature 429(6989):292–294. https://doi.org/10.1038/nature02550

    Article  PubMed  Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Shah MM, Shafqat MN (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37(12):1949–1956. https://doi.org/10.1016/j.ecole

    Article  Google Scholar 

  • Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda LD (2006) Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil. Braz J Biol 66:101–107

    Article  PubMed  Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369(6483):740–742. https://doi.org/10.1038/369740a0

    Article  Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84

    Article  Google Scholar 

  • Pastor J, Gutiérrez-Ginés MJ, Hernández AJ (2015) Heavy-metal phytostabilizing potential of Agrostis castellana Boiss and reuter. Int J Phytoremediation 17:988–998. https://doi.org/10.1080/15226514.2014.1003786

    Article  PubMed  Google Scholar 

  • Pedro CA, Santos MSS, Ferreira SMF, Gonçalves SC (2013) The influence of cadmium, 1051contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar Environ Res 92:197–205

    Article  PubMed  Google Scholar 

  • Pinsino A, Matranga V, Roccheri MC (2012) Manganese: a new emerging contaminant in the environment. In: Srivastava J (ed) Environmental contamination. InTechOpen, London. http://www.intechopen.com/books/environmentalcontamination/manganesea-new-emerging-contaminant-in-the-environment. ISBN: 978-953-51- 0120-8

    Google Scholar 

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106. https://doi.org/10.1007/s10123-018-0012-3

    Article  PubMed  Google Scholar 

  • Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17(4):539–546. https://doi.org/10.1002/etc.5620170404

    Article  Google Scholar 

  • Qasem NA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water 4(1):36

    Article  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10(5):430–439

    Article  PubMed  Google Scholar 

  • Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1(1):1–220

    Article  Google Scholar 

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Cey J Sci 35:25–39

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184(1–3):299–307

    Article  PubMed  Google Scholar 

  • Reichelt-Brushett A (2012) Risk assessment and ecotoxicology: limitations and recommendations for ocean disposal of mine waste in the coral triangle. Oceanography 25(4):40–51. https://doi.org/10.5670/oceanog.2012.66

    Article  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184

    Article  PubMed  Google Scholar 

  • Rieuwerts J (2015) The elements of environmental pollution (1st ed). Routledge, New York

    Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Guidi GV (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57(9):1039–1046

    Article  PubMed  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN Soil Air Water 39(8):735–741

    Article  Google Scholar 

  • Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36

    Article  Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PK (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:66

    Article  Google Scholar 

  • Shah SB (2021) Heavy metals in scleractinian corals. Springer International Publishing, Berlin

    Book  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2(1):31–51

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019

    Article  Google Scholar 

  • Singh A, Sharma A, Verma RK, Chopade RL, Pandit PP, Nagar V et al (2022) Heavy metal contamination of water and their toxic effect on living organisms. In: Dorta D, De Oliveira DP (eds) The toxicity of environmental pollutants. IntechOpen, London

    Google Scholar 

  • Solomon F (2008) Impacts of heavy metals on aquatic systems and human health. Mining.com. http://www.infomine.com/library/publications/docs/mining.com/Apr2008c.pdf

  • Soudek P, Petrová Š, Vaněk T (2012) Phytostabilization or accumulation of heavy metals by using of energy crop Sorghum sp. In: 3rd international conference on biology, environment and chemistry IPCBEE. IACSIT Press, Singapore

    Google Scholar 

  • Subhasini V, Swamy AVVS (2014) Phytoremediation of cadmium and chromium contaminated soils by Cyperus rotundus L. Am Int J Res Sci Technol J Eng Math 6:97–101

    Google Scholar 

  • Türkmen D, Bakhshpour M, Akgönüllü S, Aşır S, Denizli A (2022) Heavy metal ions removal from wastewater using cryogels: a review. Front Sustain 3:765592

    Article  Google Scholar 

  • Ueda M (2016) Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem 80(7):1243–1253

    Article  PubMed  Google Scholar 

  • Un Nisa W, Rashid A (2015) Potential of vetiver (Vetiveria zizanioides L.) grass in removing selected PAHs from diesel contaminated soil. Pak J Bot 47:291–296

    Google Scholar 

  • UNEP (United Nations Environment Programme) (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UN Environmental Program Chemicals Branch, Geneva

    Google Scholar 

  • Varun M, Souza RD, Pratas J et al (2011) Evaluation of phytostabilization, a green technology to remove heavy metals from industrial sludge using Typha latifolia L. experimental design. Biotechnol Bioinformatics Bioeng 1:137–145

    Google Scholar 

  • Veselý T, Trakal L, Neuberg M, Száková J, Drábek O, Tejnecký V et al (2012) Removal of Al, Fe and Mn by Pistia stratiotes L. and its stress response. Open Life Sci 7(6):1037–1045. https://doi.org/10.2478/s11535-012-0099-z

    Article  Google Scholar 

  • Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143(1):489–499. https://doi.org/10.1007/s12011-010-8850-7

    Article  PubMed  Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131(2):323–336. https://doi.org/10.1016/j.envpol.2004.01.010

    Article  PubMed  Google Scholar 

  • Wang R, Balkanski Y, Boucher O, Bopp L, Chappell A, Ciais P, Tao S (2015) Sources, transport and deposition of iron in the global atmosphere. Atmos Chem Phys 15(11):6247–6270. https://doi.org/10.5194/acp-15-6247-2015

    Article  Google Scholar 

  • Wase J, Forster C (1997) Biosorbents for metal ions. Taylor & Francis Ltd, London

    Book  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar Chem 48(2):157–182. https://doi.org/10.1016/0304-4203(94)00055-I

    Article  Google Scholar 

  • World Health Organization (1984) Guidelines for drinking, water quality. WHO, Geneva

    Google Scholar 

  • World Health Organization (2017) Lead poisoning and health. http://www.who.int/mediacentre/factsheets/fs379/en/

  • Wu H, Liu X, Zhao J, Yu J (2013) Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. J Plant Growth Regul 32(2):353–361

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw Ecol 2011:402647, 20 pp

    Google Scholar 

  • Xu J, Yin HX, Liu X, Li X (2010) Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta 231(2):449–459

    Article  PubMed  Google Scholar 

  • Xue H, Li J, **e H, Wang Y (2018) Review of drug repositioning approaches and resources. Int J Biol Sci 14(10):1232–1244

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW et al (2016) Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury in toxication. Ann Occup Environ Med 28:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Yang N, Li Y, Ren B, Ding X, Bian H, Yao X (2020) Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecol Conserv 22:e00925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maithani, D. et al. (2023). Heavy Metal Pollution in Water: Cause and Remediation Strategies. In: Soni, R., Suyal, D.C., Morales-Oyervides, L., Sungh Chauhan, J. (eds) Current Status of Fresh Water Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5018-8_8

Download citation

Publish with us

Policies and ethics

Navigation