Synthesization of SnSe by High-Energy Ball Milling Technique

  • Conference paper
  • First Online:
Recent Advances in Nanomaterials (ICNOC 2022)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 27))

  • 198 Accesses

Abstract

Tin selenide (SnSe) are the materials consisting nontoxic and economical earth-abundant elements. SnSe was synthesized by high-energy ball milling technique. The pure phase, orthorhombic phase was obtained at 300 RPM for 18H which was confirmed by X-ray diffraction (XRD). The average crystalline size was estimated ~ 10 nm. Surface morphology was carried out by scanning electron microscopy (SEM). The distribution of non-uniform particle size from few nanometers to micrometer range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ju H, Kim JJAn (2016) Chemically exfoliated SnSe nanosheets and their SnSe/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) composite films for polymer based thermoelectric applications. 10(6):5730–9

    Google Scholar 

  2. Li Z, Guo Y, Zhao F, Nie C, Li H, Shi J, et al. (2020) Effect of film thickness and evaporation rate on co-evaporated SnSe thin films for photovoltaic applications. 10(28):16749–55

    Google Scholar 

  3. Kumar DK, Loskot J, Kříž J, Bennett N, Upadhyaya HM, Sadhu V, et al. (2020) Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. 199:570–4

    Google Scholar 

  4. Ju H, Park D, Kim JJJoMCA (2018) Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe 0.8 S 0.2 nanosheets/carbon nanotubes for wearable electronic applications. 6(14):5627–34

    Google Scholar 

  5. Haq BU, AlFaify S, Ahmed R, Butt FK, Laref A, Shkir MJPRB (2018) Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications. 97(7):075438

    Google Scholar 

  6. ur Rehman S, Butt FK, Tariq Z, Hayat F, Gilani R, Aleem FJJoA, et al. (2017) Pressure induced structural and optical properties of cubic phase SnSe: an investigation for the infrared/mid-infrared optoelectronic devices. 695:194–201

    Google Scholar 

  7. Chung K-M, Wamwangi D, Woda M, Wuttig M, Bensch WJJoap (2008) Investigation of SnSe, Sn Se 2, and Sn 2 Se 3 alloys for phase change memory applications. 103(8):083523

    Google Scholar 

  8. Fan J, Huang X, Liu F, Deng L, Chen GJCC (2021) Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-based composite films for high-performance thermoelectric applications. 24:100612

    Google Scholar 

  9. Li S, Li X, Ren Z, Zhang QJJoMCA (2018) Recent progress towards high performance of tin chalcogenide thermoelectric materials. 6(6):2432–48

    Google Scholar 

  10. Zhao L-D, Chang C, Tan G, Kanatzidis MGJE, Science E (2016) SnSe: a remarkable new thermoelectric material. 9(10):3044–60

    Google Scholar 

  11. Shi G, Kioupakis EJJoAP (2015) Quasiparticle band structures and thermoelectric transport properties of p-type SnSe 117(6):065103

    Google Scholar 

  12. Kumar M, Rani S, Singh Y, Gour KS, Singh VN (2021) Tin-selenide as a futuristic material: properties and applications. RSC Adv 11(12):6477–503

    Google Scholar 

  13. Neeleshwar S, Saini A, Bairwa MK, Bisht N, Katre A, Narsinga RG (2022) Major challenges toward the development of efficient thermoelectric materials: from high figure-of-merit (zT) materials to devices. In: Khan ZH (ed) Nanomaterials for innovative energy systems and devices. Springer Nature Singapore, Singapore, pp 103–141

    Chapter  Google Scholar 

  14. Shi W, Gao M, Wei J, Gao J, Fan C, Ashalley E et al (2018) Tin selenide (SnSe): growth, properties, and applications. Adv Sci 5(4):1700602

    Article  Google Scholar 

  15. Erdemir A (1994) Crystal chemistry and solid lubricating properties of the monochalcogenides gallium selenide and tin selenide. Tribol Trans 37(3):471–8

    Google Scholar 

  16. Abrikosov NK (2013) Semiconducting II–VI, IV–VI, and V–VI compounds. Springer

    Google Scholar 

  17. Kim S-u, Duong A-T, Cho S, Rhim S, Kim J (2016) A microscopic study investigating the structure of SnSe surfaces. Surface Sci 651:5–9

    Google Scholar 

  18. Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S et al (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 43(20):7391–7399

    Article  CAS  PubMed  Google Scholar 

  19. Zhao L-D, Chang C, Tan G, Kanatzidis MG (2016) SnSe: a remarkable new thermoelectric material. Energy Environ Sci 9(10):3044–3060

    Article  CAS  Google Scholar 

  20. ** M, Shao H, Hu H, Li D, Shen H, Xu J et al (2017) Growth and characterization of large size undoped p-type SnSe single crystal by horizontal bridgman method. J Alloy Compd 712:857–862

    Article  CAS  Google Scholar 

  21. ** M, Shi X-L, Feng T, Liu W, Feng H, Pantelides ST, et al. (2019) Super large Sn1–x Se single crystals with excellent thermoelectric performance. ACS Appl Mater Interfaces 11(8):8051–9

    Google Scholar 

  22. Zhang M, Wang D, Chang C, Lin T, Wang K, Zhao L-D (2019) Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe. J Mater Chem C 7(34):10507–10513

    Article  CAS  Google Scholar 

  23. Serrano-Sánchez F, Gharsallah M, Nemes N, Mompean F, Martínez J, Alonso JJAPL (2015) Record Seebeck coefficient and extremely low thermal conductivity in nanostructured SnSe. 106(8):083902

    Google Scholar 

  24. Xu R, Huang L, Zhang J, Li D, Liu J, Liu J et al (2019) Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. J Mater Chem A 7(26):15757–15765

    Article  CAS  Google Scholar 

  25. ** M, Tang Z, Jiang J, Zhang R, Zhou L, Zhao S et al (2020) Growth of SnSe single crystal via vertical vapor deposition method and characterization of its thermoelectric performance. Mater Res Bull 126:110819

    Article  CAS  Google Scholar 

  26. Yang S, Si J, Su Q, Wu H (2017) Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater Lett 193:146–149

    Article  CAS  Google Scholar 

  27. Sidharth D, Nedunchezhian AA, Rajkumar R, Devi NY, Rajasekaran P, Arivanandhan M et al (2019) Enhancing effects of Te substitution on the thermoelectric power factor of nanostructured SnSe 1–x Te x. Phys Chem Chem Phys 21(28):15725–15733

    Article  CAS  PubMed  Google Scholar 

  28. Shi XL, Tao X, Zou J, Chen ZG (2020) High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges. Adv Sci 7(7):1902923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sri Sathya Sai Institute of Higher Learning Prasanthinilayam, A.P., India. SN acknowledge the FRGS (Grant No. GGSIPU/DRC/FRGS/2022/1223/13). Mukesh Kumar Bairwa acknowledge the IPRF (GGSIPU/DRC/2019/1453). Anjali Saini acknowledge the STRF (GGSIPU/DRC/2021/675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Neeleshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bairwa, M.K., Gowrishankar, R., Saini, A., Neeleshwar, S. (2024). Synthesization of SnSe by High-Energy Ball Milling Technique. In: Khan, Z.H., Jackson, M., Salah, N.A. (eds) Recent Advances in Nanomaterials. ICNOC 2022. Springer Proceedings in Materials, vol 27. Springer, Singapore. https://doi.org/10.1007/978-981-99-4878-9_76

Download citation

Publish with us

Policies and ethics

Navigation