Plant-Based Antibody Manufacturing

  • Chapter
  • First Online:
Tools & Techniques of Plant Molecular Farming

Abstract

Plant-based manufacture of antibodies and other biologics is a rapidly growing area of interest to the biopharmaceutical industry. The use of plants can significantly accelerate biologics production, with relatively lower infrastructure costs, compared with mammalian cell-based manufacturing. Improvements in genomics, bioinformatics, and genome engineering tools have contributed to the generation of more efficient and productive plant strains. Novel technological approaches have streamlined expression, extraction, and purification of biologics from these plants and resulted in biologics, which have successfully been used in clinical trials and treatment of patients. In this chapter, we discuss the progress and remaining challenges for plant-based manufacturing of biologics, with a focus on the use of Nicotiana benthamiana for production of antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 January 2024

    A correction has been published.

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AEX:

Anion exchange chromatography

CAM-Cys:

Carbamidomethyl-cysteine

CFU:

Colony-forming unit

CHO:

Chinese hamster ovary cells

COVID-19:

SARS-CoV-2 virus

Cys:

Cysteine

Da:

Dalton

DF:

Diafiltration

DP:

Drug product

DS:

Drug substance

DSP:

Downstream process

ELISA:

Enzyme-linked immunosorbent assay

EU:

Enzyme units

Fc:

Constant fragment

Fuc:

Fucose

Gal:

Galactose

GlcNAC:

N-acetylglucosamine

GMP:

Good manufacturing practices

HC:

Heavy chain

HC-DNA:

Host cell DNA

HCP:

Host cell protein

HEK:

Human embryonic kidney cells

HIV:

Human immunodeficiency virus type 1

HSV:

Herpes simplex virus

icIEF:

Imaged capillary isoelectric focusing

IEX:

Ion-exchange chromatography

IV:

Intravenous

LC:

Light chain

LC-MS:

Liquid chromatography-mass spectrometry

Lys-C:

Lys-C protease

mAb:

Monoclonal antibody

Man:

Mannose

MW:

Molecular weight

NSO:

Murine myeloma cells

PD:

Pharmacodynamics

PK:

Pharmacokinetics

PMP:

Plant-made pharmaceutical

PVX:

Potato virus X

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEC-HPLC:

Size-exchange-high-pressure liquid chromatography

TFF:

Tangential flow filtration

TVCV:

Turnip vein clearing virus

U.S.P.:

U.S. Pharmacopeia

UF:

Ultrafiltration

US FDA:

U.S. Food and Drug Administration

USP:

Upstream process

UV:

Ultraviolet light wavelength

WHO:

World Health Organization

Xyl:

Xylose

References

  • Alam A, Jiang L, Kittleson GA, Steadman KD, Nandi S, Fuqua JL et al (2018) Technoeconomic modeling of plant-based Griffithsin manufacturing. Front Bioeng Biotechnol 6:1–13

    Google Scholar 

  • Antibody Society (2022) Antibody therapeutics approved or in regulatory review in the EU or US - The Antibody Society. https://www.antibodysociety.org/resources/approved-antibodies/. Accessed 8 Apr 2023

  • Bakker HAC, Jan HB (2010) Mammalian-type glycosylation in plants. Glycobiology 1:1–22

    Google Scholar 

  • Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F et al (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core xylose. Glycobiology 13:427–434

    CAS  PubMed  Google Scholar 

  • Barone PW, Wiebe ME, Leung JC, Hussein ITM, Keumurian FJ, Bouressa J et al (2020) Viral contamination in biologic manufacture and implications for emerging therapies. Nat Biotechnol 38:563–572

    CAS  PubMed  Google Scholar 

  • Bio (2014) 4 benefits of plant-made pharmaceuticals more on this topic. Biotechnology Innovation Organization, pp 1–2

    Google Scholar 

  • Bolisetty P, Tremml G, Xu S, Khetan A (2020) Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies. mAbs 12:1–8

    Google Scholar 

  • Buyel JF, Fischer R (2012) Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnol Bioeng 109:2–4

    Google Scholar 

  • Buyel JF, Twyman RM, Fischer R (2017) Very-large-scale production of antibodies in plants: the biologization of manufacturing. Biotechnol Adv 35:458–465

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2019) Years of Ebola virus disease outbreaks - cases and outbreaks of EVD by year. Cdc.Gov, pp 1–33

    Google Scholar 

  • Chen Q, Davis KR (2016) The potential of plants as a system for the development and production of human biologics. F1000Res 5:1–8

    Google Scholar 

  • Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC et al (2020) High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng Biotechnol 7:1–15

    Google Scholar 

  • Dubald M, Cropscience B, Peters J (2009) A case study for plant-made pharmaceuticals comparing different plant expression and production systems. Methods Mol Biol 483:209–221

    PubMed  Google Scholar 

  • Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. mAbs 7:9–14

    CAS  PubMed  Google Scholar 

  • Farid SS, Baron M, Stamatis C, Nie W, Coffman J (2020) Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D. mAbs 12:1754999

    PubMed  PubMed Central  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D et al (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    CAS  PubMed  Google Scholar 

  • Gregersen JP (2008) A risk-assessment model to rate the occurrence and relevance of adventitious agents in the production of influenza vaccines. Vaccine 26:3297–3304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiatt A, Pauly M (2006) Monoclonal antibodies from plants: a new speed record. Proc Natl Acad Sci U S A 103:14645–14646

    CAS  PubMed  PubMed Central  Google Scholar 

  • KBP-201 COVID-19 Vaccine Trial in Healthy Volunteers (2020)

    Google Scholar 

  • Larsen JS, Karlsson RTG, Tian W, Schulz MA, Matthes A, Clausen H et al (2020) Engineering mammalian cells to produce plant-specific N-glycosylation on proteins. Glycobiology 30:528–538

    CAS  PubMed  Google Scholar 

  • Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci 104:1866–1884

    CAS  PubMed  Google Scholar 

  • Liu J, Eris T, Li C, Cao S, Kuhns S (2016) Assessing analytical similarity of proposed Amgen biosimilar ABP 501 to Adalimumab. BioDrugs 30:321–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • LONZA (2020) Mammalian protein expression

    Google Scholar 

  • Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JK-C, Christou P, Chikwamba R, Haydon H, Paul M, Ferrer MP et al (2013) Realising the value of plant molecular pharming to benefit the poor in develo** countries and emerging economics. Plant Biotechnol J 11:1029–1033

    PubMed  Google Scholar 

  • Margolin E, Allen JD, Verbeek M, van Diepen M, **mba P, Chapman R et al (2021) Site-specific glycosylation of recombinant viral glycoproteins produced in Nicotiana benthamiana. Front Plant Sci 12:1–12

    Google Scholar 

  • Medicago (2022) Plant-based technology

    Google Scholar 

  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int 2014:136419

    PubMed  PubMed Central  Google Scholar 

  • Mir-Artigues P, Twyman RM, Alvarez D, Cerda Bennasser P, Balcells M, Christou P et al (2019) A simplified techno-economic model for the molecular pharming of antibodies. Biotechnol Bioeng 116:2526–2539

    CAS  PubMed  Google Scholar 

  • Moussavou G, Ko K, Lee JH, Choo YK (2015) Production of monoclonal antibodies in plants for cancer immunotherapy. Biomed Res Int 2015:306164

    PubMed  PubMed Central  Google Scholar 

  • Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA (2016) Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. mAbs 8:1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Politch JA, Cu-Uvin S, Moench TR, Tashima KT, Marathe JG, Guthrie KM et al (2021) Safety, acceptability, and pharmacokinetics of a monoclonal antibody-based vaginal multipurpose prevention film (MB66): a phase I randomized trial. PLoS Med 18:1–24

    Google Scholar 

  • Protalix Biotherapeutics (2022) Protalix Pipeline

    Google Scholar 

  • Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Alanis IA, Renaud JB, García-Lara S, Menassa R, Cardineau GA (2018) Transient co-expression with three O-glycosylation enzymes allows production of GalNAc-O-glycosylated granulocyte-colony stimulating factor in N. benthamiana. Plant Methods 14:1–14

    Google Scholar 

  • ReportLinker (2021) Monoclonal antibodies (mAbs) global market report 2021. The Business Research Company, pp 1–10

    Google Scholar 

  • Rup B, Alon S, Amit-Cohen BC, Almon EB, Chertkoff R, Tekoah Y et al (2017) Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems - the taliglucerase alfa story. PLoS One 12:1–18

    Google Scholar 

  • Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J et al (2015) From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol J 13:1094–1105

    CAS  PubMed  Google Scholar 

  • Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci 10:1–10

    Google Scholar 

  • Scott C (2020) Making MAbs: bioprocess advancements challenge platform assumptions. Bioprocess Int:1–18

    Google Scholar 

  • Sifniotis V, Cruz E, Eroglu B, Kayser V (2019) Current advancements in addressing key challenges of therapeutic antibody design, manufacture, and formulation. Antibodies 8:36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Zhang M, Yin L, Wang K, Zhou Y et al (2020) COVID-19 treatment: close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int J Antimicrob Agents 56:1–9

    Google Scholar 

  • Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L et al (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    CAS  PubMed  Google Scholar 

  • Sun D, Gao W, Hu H, Zhou S (2022) Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 12:3049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swope K, Morton J, Pogue GP, Hume S, Pauly MH, Shepherd J et al (2021) Manufacturing plant-made monoclonal antibodies for research or therapeutic applications. Methods Enzymol 660:239–263

    CAS  PubMed  Google Scholar 

  • Swope K, Morton J, Pogue GP, Burden L, Partain N, Hume S et al (2022) Reproducibility and flexibility of monoclonal antibody production with Nicotiana benthamiana. mAbs 14:1–13

    Google Scholar 

  • Tusé D (2011) Safety of plant-made pharmaceuticals: product development and regulatory considerations based on case studies of two autologous human cancer vaccines. Hum Vaccin 7:322–330

    PubMed  Google Scholar 

  • Tusé D, McDonald KA (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. Plant Made Biologics 7:1–16

    Google Scholar 

  • Walwyn DR, Huddy SM, Rybicki EP (2015) Introduction recombinant protein expression in plants. Biotechnol Lett 37:265–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Pogue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pogue, G.P. et al. (2023). Plant-Based Antibody Manufacturing. In: Kole, C., Chaurasia, A., Hefferon, K.L., Panigrahi, J. (eds) Tools & Techniques of Plant Molecular Farming. Concepts and Strategies in Plant Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-4859-8_7

Download citation

Publish with us

Policies and ethics

Navigation