Transcriptional Regulatory Network Involved in Drought and Salt Stress Response in Rice

  • Chapter
  • First Online:
Salinity and Drought Tolerance in Plants

Abstract

Transcription factors (TFs) family intimately regulate gene expression in response to hormones, biotic and abiotic factors, symbiotic interactions, cell differentiation, stress signaling pathways in plants, and protective genome activities in response to water and salt stress conditions. TFs are specialized proteins which bind to specific DNA elements in gene promoters and modulate gene expression in response to various external and internal stimuli. Water and salt stress-responsive genes expression is regulated by a large number of common transcription factors (TFs). AP2/ERF, NAC, bZIP, HD-ZIP, and MYB family of transcription factor/genes are regulated by drought, salt, heat, cold, etc. DREB1/CBF, DREB2, and HD-ZIP TF/gene family control are not involved in the abscisic acid (ABA) dependent pathway of stress mitigation. OsAREBs/ABF, NAC, MYB, and MYC TF/genes are identified in ABA- dependent transcriptional networks in rice. TFs are crucial part of plant signal transduction pathway mediated by signal receptors, phytohormones, and other regulatory compounds also. The expression of downstream genes may produce a subset of TFs or regulate other functional proteins involved in physiological drought adaptation. Thus, the hierarchic regulations of TF activities, downstream gene expression, and protein–protein interaction comprise a complex regulatory network, which participates in stress response and adaptation in rice crop. This chapter summarizes the basic mechanisms of water and salt stress response at plant tissue and cellular level through transcriptional factors with the integration and discussion of regulatory network based on scientific findings in last two decades in rice. But more insight is needed to find new tools for enhancing cereals’ adaptation to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 187.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agalou A, Purwantomo S, Övernäs E, Johannesson H, Zhu X, Estiati A, Ouwerkerk PB (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66(1):87–103

    Article  PubMed  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  PubMed  Google Scholar 

  • Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Xu JH (2022) CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants 11(9):1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75(1):179–191

    Article  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ohsugi R (2012) A rice calcium dependent protein kinase OsCPK12 oppositely modulates salt stress tolerance and blast disease resistance. Plant J 69(1):26–36

    Article  PubMed  Google Scholar 

  • Atienza Martínez J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    Article  Google Scholar 

  • Bang SW, Lee DK, Jung H, Chung PJ, Kim YS, Choi YD, Kim JK (2019) Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnol J 17(1):118–131

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  Google Scholar 

  • Basri K, Sukiran NL, Zainal Z (2016) Cloning and characterization of the ONAC106 gene from Oryza sativa cultivar Kuku Belang. AIP Conf Proc 1784(1):020021

    Article  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 5:1554

    Article  Google Scholar 

  • Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro A, Fumasoni I, Satoh K, Piffanelli P (2009) Characterization of WRKYco-regulatory networks in rice and arabidopsis. BMC Plant Biol 9(1):1–22

    Article  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149(1):95–101

    Article  Google Scholar 

  • Bray E, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1158–1203

    Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, **a M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198

    Article  PubMed  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Chen H, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193:8–17

    Article  PubMed  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    Article  PubMed  Google Scholar 

  • Chen HC, Hsieh-Feng V, Liao PC, Cheng WH, Liu LY, Yang YW, Chang MC (2017) The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol Biol 94(4):531–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Huang Y, Zhu N, Zhao Y (2014) The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549(2):266–274

    Article  PubMed  Google Scholar 

  • Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  PubMed  PubMed Central  Google Scholar 

  • Dansana PK, Kothari KS, Vij S, Tyagi AK (2014) OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33(9):1425–1440

    Article  PubMed  Google Scholar 

  • Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A (2019) A unique bZIP transcription factor imparting multiple stress tolerance in rice. Rice 12(1):1–16

    Article  Google Scholar 

  • Deeba F, Sultana T, Javaid B, Mahmood T, Naqvi SMS (2017) Molecular characterization of a MYB protein from Oryza sativa for its role in abiotic stress tolerance. Braz Arch Biol Technol 60:352

    Article  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Hama H (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126(2):759–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4regulates stress-responsive gene expression in rice. BMC Plant Biol 8(1):1–13

    Article  Google Scholar 

  • Du H, Wang N, Cui F, Li X, **ao J, **ong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154(3):1304–1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33(4):751–763

    Article  PubMed  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, **ong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi NSMA, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147(1):15–27

    Article  PubMed  Google Scholar 

  • Furuta T, Uehara K, Angeles-Shim RB, Shim J, Ashikari M, Takashi T (2014) Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed Sci 63(5):468–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    Article  PubMed  Google Scholar 

  • Gao P, Bai X, Yang L, Lyu D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903

    Article  PubMed  PubMed Central  Google Scholar 

  • Geda YF (2019) Determinants of teenage pregnancy in Ethiopia: a case–control study, 2019. Curr Med Issues 17(4):10–41

    Article  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51(1):71–81

    Article  PubMed  Google Scholar 

  • Guo C, Yao L, You C, Wang S, Cui J, Ge X, Ma H (2016) MID1 plays an important role in response to drought stress during reproductive development. Plant J 88(2):280–293

    Article  PubMed  Google Scholar 

  • Guo Y, Li P, Zou Y, **e D, Lu J, Liu Q, Li Q (2019) Expression and functional analysis of rice OsWRKY78 transcription factor in response to salt stress. J Yangzhou Univ 40(2):18–24

    Google Scholar 

  • Herath V (2016) Small family, big impact: in-silico analysis of DREB2 transcription factor family in rice. Comput Biol Chem 65:128–139

    Article  PubMed  Google Scholar 

  • Herawati R, Alnopri A, Masdar M, Simarmata M, Sipriyadi S, Sutraati M (2021) Identification of drought tolerant and molecular analysis of DREB2A and BADH2 genes and yield potential of lines from single crossing bengkulu local rice varieties. Biodivers J Biol Divers 22:2

    Article  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB (2010a) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167(17):1512–1520

    Article  PubMed  Google Scholar 

  • Hossain A, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Park PB (2010b) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72(4):557–566

    Article  Google Scholar 

  • Hou D, Ye T, Zhang L, Fan J, Li C, Dong Y, Li L (2020) Overexpressing the WRKY transcription factor OsWRKY97 improves drought tolerance in rice. Res Square. https://doi.org/10.21203/rs.3.rs-17373/v1

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43, 103–111

    Google Scholar 

  • Hu H, Dai M, Yao J, **ao B, Li X, Zhang Q, **ong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, **ong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1):169–181

    Article  PubMed  Google Scholar 

  • Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77

    Article  Google Scholar 

  • Hu Z, Lu SJ, Wang MJ, He H, Sun L, Wang H, Liu JX (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11(5):736–749

    Article  PubMed  Google Scholar 

  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389(3):556–561

    Article  PubMed  Google Scholar 

  • Huang P, Chen H, Mu R, Yuan X, Zhang HS, Huang J (2015) OsMYB511 encodes a MYB domain transcription activator early regulated by abiotic stress in rice. Genet Mol Res 14:9506–9517

    Article  PubMed  Google Scholar 

  • Huang L, Hong Y, Huijuan Zhang H, Li D, Song F (2016) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F, Li Z (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang K, Wu T, Ma Z, Li Z, Chen H, Zhang M, Bian M, Bai H, Jiang W, Du X (2021) Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth. Int J Mol Sci 22:4337

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Sun-Hwa H, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114

    Article  PubMed  Google Scholar 

  • Jiang Y, Qiu Y, Hu Y, Yu D (2016) Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Zhou L, Chen W, Ye N, **a J, Zhuang C (2019) Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice 12(1):1–11

    Article  Google Scholar 

  • ** XF, **ong AS, Peng RH, Liu JG, Gao F, Chen JM, Yao QH (2010) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep 43(1):34–39

    Article  PubMed  Google Scholar 

  • Joo J, Lee YH, Song SI (2014) Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol Rep 8(6):431–441

    Article  Google Scholar 

  • Jung H, Chung PJ, Park SH, Redillas MCFR, Kim YS, Suh JW, Kim JK (2017) Overexpression of Os ERF 48 causes regulation of Os CML 16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J 15(10):1295–1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Shibata K, Akahoshi R, Nishiuchi S, Takahashi H, Nakazono M, Inukai Y (2022) WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc Natl Acad Sci 119(1):e2101846119

    Article  PubMed  Google Scholar 

  • Ke YG, Yang ZJ, Yu SW, Li TF, Wu JH, Gao H, Luo LJ (2014) Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. J Plant Biol 57(3):150–161

    Article  Google Scholar 

  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Jwa NS (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of ArabidopsisAtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun 300(4):868–876

    Article  PubMed  Google Scholar 

  • Kim SW, Lee SK, Jeong HJ, An G, Jeon JS, Jung KH (2017) Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Sci Rep 7(1):1–18

    Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1–related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16(5):1163–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44(6):939–949

    Article  PubMed  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15(4):458–471

    Article  PubMed  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6(1):1–15

    Article  Google Scholar 

  • Kumar SVV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26(6):1099–1110

    Article  Google Scholar 

  • Kwon E, Basnet P, Roy NS, Kim JH, Heo K, Park KC, Choi IY (2021) Identification of resurrection genes from the transcriptome of dehydrated and rehydrated Selaginella tamariscina. Plant Signal Behav 16(12):1973703

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SK, Kim BG, Kwon TR, Jeong MJ, Park SR, Lee JW, Park SC (2011) Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci 36(1):139–151

    Article  PubMed  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim J (2017a) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Yoon S, Kim YS, Kim JK (2017b) Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signal Behav 12(1):e1268311

    Article  PubMed  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Hwang DJ (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11(1):1–12

    Article  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111(27):10013–10018

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim C, Kang K, Shim Y, Yoo SC, Paek NC (2022) Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiol 188(4):1900–1916

    Article  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Google Scholar 

  • Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T (2007) Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol 64:49–58

    Google Scholar 

  • Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169

    Article  PubMed  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1):19–36

    Article  PubMed  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33(8):1689–1697

    Article  PubMed  Google Scholar 

  • Mann A, Kumar N, Sharma C, Kumar A, Kumar A, Meena BL (2019) Functional annotation of differentially expressed genes under salt stress in Dichanthium annulatum. Indian J Plant Physiol 24:104–111. https://doi.org/10.1007/s40502-019-0434-8

    Article  Google Scholar 

  • Mann A, Kumar N, Kumar A et al (2021) de novo transcriptomic profiling of differentially expressed genes in grass halophyte Urochondra setulosa under high salinity. Sci Rep 11:1–14

    Article  Google Scholar 

  • Mao J, Li W, Liu J, Li J (2021) Versatile physiological functions of plant GSK3-like kinases. Gene 12(5):697

    Article  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics 283(2):185–196

    Article  Google Scholar 

  • Minh-Thu PT, Kim JS, Chae S, Jun KM, Lee GS, Kim DE, Kim YK (2018) A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Mol Cells 41(8):781

    PubMed  PubMed Central  Google Scholar 

  • Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari MR, Nematzadeh GA, Asari S (2019) Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. Rice 12(1):1–13

    Article  Google Scholar 

  • Mizoi J, Kanazawa N, Kidokoro S, Takahashi F, Qin F, Morimoto K, Yamaguchi-Shinozaki K (2019) Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J Biol Chem 294(3):902–917

    Article  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci 101(16):6309–6314

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Saravanan K, Mareeswaran N, Kumar R, Ramesh M (2018) Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. J Plant Biochem Biotechnol 27(3):300–317

    Article  Google Scholar 

  • Nakamura A, Fukuda A, Sakai S, Tanaka Y (2006) Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol 47(1):32–42

    Article  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  PubMed  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WW, Seo JB, Cho K, Yoon II (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10(1):1–19

    Article  Google Scholar 

  • Ning J, Zhang B, Wang N, Zhou Y, **ong L (2011) Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice. Plant Cell 23:4334–4347

    Article  PubMed  PubMed Central  Google Scholar 

  • Nutan KK, Singla-Pareek SL, Pareek A (2020) The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot 71(2):684–698

    PubMed  Google Scholar 

  • Ortolan F, Fonini LS, Pastori T, Mariath JE, Saibo NJ, Margis-Pinheiro M, Lazzarotto F (2021) Tightly controlled expression of OsbHLH35 is critical for anther development in rice. Plant Sci 302:110716

    Article  PubMed  Google Scholar 

  • Park SH, Jeong JS, Lee KH, Kim YS, Do Choi Y, Kim JK (2015) OsbZIP23 and OsbZIP45, members of the rice basic leucine zipper transcription factor family, are involved in drought tolerance. Plant Biotechnol Rep 9(2):89–96

    Article  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27(10):1677–1686

    Article  PubMed  Google Scholar 

  • Peng Y, Tang N, Zou J, Ran J, Chen X (2022) Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance. Plant Growth Regul 2022:1–11

    Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65(1):35–47

    Article  Google Scholar 

  • Rachmat A, Nugroho S, Sukma D, Hajrial Aswidinnoor H, Sudarsono (2014) Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance. Emir J Food Agric 26(6):519–527. https://doi.org/10.9755/ejfa.v26i6.17672

    Article  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):7–20

    Google Scholar 

  • Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y (2012) AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinforma 8:9369

    Article  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10(7):792–805

    Article  PubMed  Google Scholar 

  • Saengngam S, Takpirom W, Buaboocha T, Chadchawan S (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55(3):198–208

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  PubMed  Google Scholar 

  • Sandhya J, Ashwini T, Manisha R, Vinodha M, Srinivas A (2021) Drought tolerance enhancement with co-Overexpression of DREB2A and APX in indica rice (Oryza sativa L.). American. J Plant Sci 12(2):234–258

    Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Seong SY, Shim JS, Bang SW, Kim JK (2020) Overexpression of OsC3H10, a CCCH-zinc finger, improves drought tolerance in rice by regulating stress-related genes. Plants 9(10):1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Tripathi A, Sanan-Mishra N (2015) Profiling the expression domains of a rice-specific microRNA under stress. Front Plant Sci 6:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, Wang K (2017a) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60(5):506–515

    Article  PubMed  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, ** D, Ming F (2017b) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7(1):1–16

    Article  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim J-K (2018) Overexpression of OsNAC14 Improves Drought Tolerance in Rice. Front Plant Sci 9:310. https://doi.org/10.3389/fpls.2018.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozakiy K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  Google Scholar 

  • Song Y, You J, **ong L (2009) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70(3):297–309

    Article  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  PubMed  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61(10):2807–2818

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Gao D, **ong Y, Tang X, **ao X, Wang C, Yu S (2017) Hairy leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice. Mol Plant 10(11):1417–1433

    Article  PubMed  Google Scholar 

  • Sun X, Wang Y, Sui N (2018) Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 503(2):397–401

    Article  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284(3):173–183

    Article  Google Scholar 

  • Tang N, Zhang H, Li X, **ao J, **ong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158(4):1755–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Liu K (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, **ao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62(14):4863–4874

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes in rice encode AP2 containing proteins that bind specifically to the dehydration-responsive element. J Integr Plant Biol 47(4):467–476

    Article  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    Article  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122

    Article  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97(21):11632–11637

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37(1):115–127

    Article  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  PubMed  Google Scholar 

  • Viana VE, Marini N, Busanello C, Pegoraro C, Fernando JA, Da Maia LC, Costa de Oliveira A (2018) Regulation of rice responses to submergence by WRKY transcription factors. Biol Plant 62(3):551–560

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6(9):e25216

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602

    Article  PubMed  Google Scholar 

  • Wang L, Li Z, Lu M, Wang Y (2017) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21:2288. https://doi.org/10.3390/ijms21072288

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147(1):367–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen J, Zeng Y, Chen Y, Fan F, Li S (2021) Genic male sterility increases rice drought tolerance. Plant Sci 312:111057

    Article  PubMed  Google Scholar 

  • Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, Fu X (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367(6478):eaaz2046

    Article  PubMed  Google Scholar 

  • **a K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7:e30039

    Article  PubMed  PubMed Central  Google Scholar 

  • **ang Y, Tang N, Du H, Ye H, **ong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong, Lizhong, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  PubMed  Google Scholar 

  • Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, Wankhede DP, Chinnusamy V (2020) Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics 21(1):1–27

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Xu K, Chen S, Li T, **a H, Chen L, Luo L (2019) A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol 19(1):1–15

    Article  Google Scholar 

  • Yang J, Liu S, Ji L, Tang X, Zhu Y, **e G (2020) Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice. J Plant Physiol 249:153165

    Article  PubMed  Google Scholar 

  • Ye H, Du H, Tang N, Li X, **ong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71(3):291–305

    Article  PubMed  Google Scholar 

  • Yoon S, Lee DK, Yu IJ, Kim YS, Choi YD, Kim JK (2017) Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnol Rep 11(1):53–62

    Article  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685

    Article  PubMed  Google Scholar 

  • Yuan X, Wang H, Cai J, Bi Y, Li D, Song F (2019a) Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol 19:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Wang H, Cai J, Li D, Song F (2019b) NAC transcription factors in plant immunity. Phytopathol Res 1(1):1–13

    Article  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135(2):615–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Ouwerkerk PB (2012) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80(6):571–585

    Article  PubMed  Google Scholar 

  • Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Liu B (2017) The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. J Exp Bot 68(16):4695–4707

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zeng D, Huang L, Shi Y, Chen T, Zhou Y (2019) Stress-activated protein kinase OsSAPK9 regulates tolerance to salt stress and resistance to bacterial blight in rice. Rice 12(1):1–15

    Article  Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21(3):736–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  PubMed  Google Scholar 

  • Zheng S, Liu S, Feng J, Wang W, Wang Y, Yu Q, Chen R (2021) Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environ Exp Bot 182:104327

    Article  Google Scholar 

  • Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis. J Plant Physiol 166(12):1296–1306

    Article  PubMed  Google Scholar 

  • Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X (2001) Toward elucidating the global expression patterns of develo** Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242

    Article  Google Scholar 

  • Zhu W, Zhang L, Zhang N, **ng Y, Jiang B (2012) The clone of wheat dehydrin-like gene wzy2 and its functional analysis in Pichia pastoris. Afr J Biotechnol 11(40):9549–9558

    Google Scholar 

  • Zolkiewicz K, Gruszka D (2022) Glycogen synthase kinases in model and crop plants–from negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. Front Plant Sci 13:939487

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Kumar, P., Suniti, Kumar, U., Avni, Mann, A. (2023). Transcriptional Regulatory Network Involved in Drought and Salt Stress Response in Rice. In: Kumar, A., Dhansu, P., Mann, A. (eds) Salinity and Drought Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-4669-3_13

Download citation

Publish with us

Policies and ethics

Navigation