Cytokines and Chemokines in Tumor Growth and Progression

  • Chapter
  • First Online:
Cytokine and Chemokine Networks in Cancer

Abstract

The significance of cytokines as signaling molecules, which has long been acknowledged, is expanding as a result of their connection to malignancies and the control of the immune system's antitumor activity. They significantly affect cellular activities concerning viruses and other diseases as well as inflammation. They are a vast family of tiny associated proteins that, upon connecting to the appropriate receptors, play crucial roles in immunological responses, proper physiology, and the evolution of new organs. These chemicals contribute to the regulation of immune cell signaling pathways as well as to the coordination and recruitment of immune cells to and from the organs. A form of this chemokine/chemokine receptor axis, in addition to the commonly understood antimicrobial immunity, also has a tumor-promoting role in numerous different cancers and is implicated in the development of repressive and protecting immunity. Consequently, they could be used as predictive indicators of different solid and hematopoietic malignancies. In addition, chemokines and their receptors play a significant role in practically all inflammatory disorders, including cancers, in one way or another. The use of novel medications for clinical assessment in the treatment of associated disorders relies on modifying the transcription of chemokines and their receptors on immune or malignant cells. The development and metastasis of tumors depend heavily on chemokines. Cancers, carcinomas, tumors, melanoma, pulmonary cancer, stomach carcinoma, acute lymphoblastic leukemia, colon cancer, non-small cell lung cancer, and non-Hodgkin's lymphoma (NHL) are only a few of the malignancies to which cytokines are linked. Numerous cancers have altered expression of several cytokines and their receptors, which results in abnormal receptor signaling. This chapter focuses on the functions of tumor necrosis factors (TNFs), interferons (INFs), and interleukins (ILs), which encourage growth, metastases, epithelial–mesenchymal transition (EMT), immune evasion, and vasculature of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed D, Cassol E (2017) Role of cellular metabolism in regulating type I interferon responses: implications for tumour immunology and treatment. Cancer Lett 409:20–29

    Article  CAS  PubMed  Google Scholar 

  • Akdis M et al (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721

    Article  CAS  PubMed  Google Scholar 

  • Aldinucci D et al (2020) The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 12(7):1765

    Article  CAS  PubMed  Google Scholar 

  • Amersi FF et al (2008) Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin Cancer Res 14(3):638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya M et al (2004) The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 4(4):291

    CAS  PubMed  Google Scholar 

  • Avalle L, Pensa S, Regis G, Novelli F, Poli V (2012) STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT 1(2):65–72. https://doi.org/10.4161/jkst.20045. PMID: 24058752; PMCID: PMC3670295. Submitted: 01/20/12; Revised: 03/16/12; Accepted: 03/16/12

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates RC et al (2004) The epithelial–mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 299(2):315–324

    Article  CAS  PubMed  Google Scholar 

  • Beil WJ et al (1993) Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J Histochem Cytochem 41(11):1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Beil WJ et al (1995) Ultrastructural immunogold localization of subcellular sites of TNF-α in colonic Crohn’s disease. J Leukoc Biol 58(3):284–298

    Article  CAS  PubMed  Google Scholar 

  • Bel’skaya LV et al (2022) Pro-inflammatory and anti-inflammatory salivary cytokines in breast cancer: relationship with clinicopathological characteristics of the tumor. Curr Issues Mol Biol 44(10):4676–4691

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertran E et al (2009) Role of CXCR4/SDF-1α in the migratory phenotype of hepatoma cells that have undergone epithelial–mesenchymal transition in response to the transforming growth factor-β. Cell Signal 21(11):1595–1606

    Article  CAS  PubMed  Google Scholar 

  • Beutler BA (1999) The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 57:16–21

    CAS  PubMed  Google Scholar 

  • Billiau A, Matthys P (2009) Interferon-γ: a historical perspective. Cytokine Growth Factor Rev 20(2):97–113

    Article  CAS  PubMed  Google Scholar 

  • Bonecchi R, Graham GJ (2016) Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol 7:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Brombacher F (2000) The role of interleukin-13 in infectious diseases and allergy. BioEssays 22(7):646–656

    Article  CAS  PubMed  Google Scholar 

  • Bruce J et al (1970) Patterns of recurrent disease in breast cancer. Lancet 295(7644):433–435

    Article  Google Scholar 

  • Bryant CE, Monie TP (2012) Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol 2(4):120015

    Article  PubMed  PubMed Central  Google Scholar 

  • Buel GR et al (2013) mTORC1 signaling aids in CADalyzing pyrimidine biosynthesis. Cell Metab 17(5):633–635

    Article  CAS  PubMed  Google Scholar 

  • Cambien B et al (2011) CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma. PLoS One 6(12):e28842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camporeale A et al (2014) STAT3 activities and energy metabolism: dangerous liaisons. Cancers 6(3):1579–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camussi G et al (1991) The molecular action of tumor necrosis factor-α. Eur J Biochem 202(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Chu W-M (2013) Tumor necrosis factor. Cancer Lett 328(2):222–225

    Article  CAS  PubMed  Google Scholar 

  • Cohen MC, Cohen S (1996) Cytokine function: a study in biologic diversity. Am J Clin Pathol 105(5):589–598

    Article  CAS  PubMed  Google Scholar 

  • Cunningham HD et al (2010) Expression of the CC chemokine receptor 7 mediates metastasis of breast cancer to the lymph nodes in mice. Transl Oncol 3(6):354–361

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Alves R et al (2020) Influence of an exergaming training program on reducing the expression of IL-10 and TGF-β in cancer patients. Games Health J 9(6):446–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Darnell JJE (2012) The JAK-STAT pathway at 20. JAK-STAT 1:2–5

    Article  PubMed  Google Scholar 

  • De Andrea M et al (2002) The interferon system: an overview. Eur J Paediatr Neurol 6:A41–A46

    Article  PubMed  Google Scholar 

  • Ding X et al (2012) High expression of CCL20 is associated with poor prognosis in patients with hepatocellular carcinoma after curative resection. J Gastrointest Surg 16(4):828–836

    Article  PubMed  Google Scholar 

  • Dubrovska A et al (2012) CXCR4 expression in prostate cancer progenitor cells. PLoS One 7(2):e31226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgueta R et al (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  • Emmett MS et al (2011) CCR7 mediates directed growth of melanomas towards lymphatics. Microcirculation 18(3):172–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engl T et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia 8(4):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquivel-Velázquez M et al (2015) The role of cytokines in breast cancer development and progression. J Interf Cytokine Res 35(1):1–16

    Article  Google Scholar 

  • Fasoulakis Z et al (2018) Interleukins associated with breast cancer. Cureus 10(11):e3549

    PubMed  PubMed Central  Google Scholar 

  • Ferreira VL et al (2018) Cytokines and interferons: types and functions. In: Khan WA (ed) Autoantibodies and cytokines, vol 13. IntechOpen, London

    Google Scholar 

  • Fitzgerald-Bocarsly P, Feng D (2007) The role of type I interferon production by dendritic cells in host defense. Biochimie 89(6–7):843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruman DA et al (2017) The PI3K pathway in human disease. Cell 170(4):605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Q et al (2017) The chemokinome superfamily in channel catfish: I. CXC subfamily and their involvement in disease defense and hypoxia responses. Fish Shellfish Immunol 60:380–390

    Article  CAS  PubMed  Google Scholar 

  • Funes SC et al (2018) Implications of macrophage polarization in autoimmunity. Immunology 154(2):186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garlanda C et al (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y et al (2013) Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One 8(1):e54959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germano G et al (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43(3):374–379

    Article  CAS  PubMed  Google Scholar 

  • Gill SS et al (2001) Small intestinal neoplasms. J Clin Gastroenterol 33(4):267–282

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Tem MP (2011) AnEs~.

    Google Scholar 

  • Griffith JW et al (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  • Groves DT, Jiang Y (1995) Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med 6(2):109–118

    Article  Google Scholar 

  • Grunt TW, Mariani GL (2013) Novel approaches for molecular targeted therapy of breast cancer: interfering with PI3K/AKT/mTOR signaling. Curr Cancer Drug Targets 13(2):188–204. https://doi.org/10.2174/1568009611313020008

    Article  CAS  PubMed  Google Scholar 

  • Gunn MD et al (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189(3):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haabeth OAW et al (2016) Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Onco Targets Ther 5(1):e1039763

    Google Scholar 

  • Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17(5):792–803

    Article  CAS  PubMed  Google Scholar 

  • Hao M et al (2012) Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol 84(2):204–214

    Article  CAS  PubMed  Google Scholar 

  • Hillinger S et al (2006) CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer 94(7):1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan SP et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38(5):709–750

    Article  CAS  PubMed  Google Scholar 

  • Hollingshead HE et al (2007) Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28(12):2641–2649

    Article  CAS  PubMed  Google Scholar 

  • Homey B et al (2000) Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 164(7):3465–3470

    Article  CAS  PubMed  Google Scholar 

  • Homey B et al (2002) CCL27–CCR10 interactions regulate T cell–mediated skin inflammation. Nat Med 8(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Hwang WL et al (2011) SNAIL regulates interleukin-8 expression, stem cell–like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 141(1):279–291

    Article  CAS  PubMed  Google Scholar 

  • Izhak L et al (2012) Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One 7(1):e28305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Jafarzadeh A et al (2019) The important role played by chemokines influence the clinical outcome of helicobacter pylori infection. Life Sci 231:116688

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Holiday C et al (2011) CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion. Int J Oncol 38(5):1279–1285

    PubMed  Google Scholar 

  • Jung SJ et al (2011) Correlation between chemokine receptor CXCR4 expression and prognostic factors in patients with prostate cancer. Korean J Urol 52(9):607–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai H et al (2011) CCR10 and CCL27 are overexpressed in cutaneous squamous cell carcinoma. Pathol Res Pract 207(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Kaiser P et al (2004) Evolution of the interleukins. Dev Comp Immunol 28(5):375–394

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S et al (2007) Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling. J Biol Chem 282(3):1757–1768

    Article  CAS  PubMed  Google Scholar 

  • Kawada K et al (2004) Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64(11):4010–4017

    Article  CAS  PubMed  Google Scholar 

  • Kiefer F, Siekmann AF (2011) The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 68(17):2811–2830

    Article  CAS  PubMed  Google Scholar 

  • Kierszenbaum F, Sztein MB (1994) Chagas disease (American trypanosomiasis). In: Parasitic infections and the immune system. Elsevier, San Diego, pp 53–85

    Chapter  Google Scholar 

  • Kim CH et al (1999) CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKβ-11/MIP-3β/ELC, are chemoattractants for CD56+ CD16− NK cells and late stage lymphoid progenitors. Cell Immunol 193(2):226–235

    Article  CAS  PubMed  Google Scholar 

  • Kitadai Y et al (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res 6(7):2735–2740

    CAS  PubMed  Google Scholar 

  • Kufareva I et al (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93(4):372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari N et al (2016) Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol 37:11553–11572

    Article  CAS  Google Scholar 

  • Kursunel MA, Esendagli G (2016) The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev 31:73–81

    Article  PubMed  Google Scholar 

  • Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bourgeois T et al (2018) Targeting T cell metabolism for improvement of cancer immunotherapy. Front Oncol 8:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SK et al (2017) Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis. Sci Rep 7(1):1–13

    Google Scholar 

  • Leonidas CP (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  Google Scholar 

  • Letsch A et al (2004) Functional CCR9 expression is associated with small intestinal metastasis. J Investig Dermatol 122(3):685–690

    Article  CAS  PubMed  Google Scholar 

  • Lewis JA et al (1996) Inhibition of mitochondrial function by interferon. J Biol Chem 271(22):13184–13190

    Article  CAS  PubMed  Google Scholar 

  • Li P et al (2011) Chemokine receptor 7 promotes cell migration and adhesion in metastatic squamous cell carcinoma of the head and neck by activating integrin αvβ3. Int J Mol Med 27(5):679–687

    CAS  PubMed  Google Scholar 

  • Li M et al (2013) A role for CCL2 in both tumor progression and immunosurveillance. Onco Targets Ther 2(7):e25474

    Google Scholar 

  • Lippert U et al (1998) Expression and functional activity of the IL-8 receptor type CXCR1 and CXCR2 on human mast cells. J Immunol 161(5):2600–2608

    Article  CAS  PubMed  Google Scholar 

  • Liu B et al (2016) Tumor-associated macrophage-derived CCL20 enhances the growth and metastasis of pancreatic cancer. Acta Biochim Biophys Sin 48(12):1067–1074

    Article  CAS  PubMed  Google Scholar 

  • López-Giral S et al (2004) Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol 76(2):462–471

    Article  PubMed  Google Scholar 

  • Lu J et al (2015a) CC motif chemokine ligand 19 suppressed colorectal cancer in vivo accompanied by an increase in IL-12 and IFN-γ. Biomed Pharmacother 69:374–379

    Article  CAS  PubMed  Google Scholar 

  • Lu J et al (2015b) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2):156–164

    Article  CAS  PubMed  Google Scholar 

  • Luan J et al (1997) Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol 62(5):588–597

    Article  CAS  PubMed  Google Scholar 

  • Lucey DR et al (1996) Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9(4):532–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa S et al (2008) Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncol Rep 19(6):1461–1468

    CAS  PubMed  Google Scholar 

  • Man K et al (2013) The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nat Immunol 14(11):1155–1165

    Article  CAS  PubMed  Google Scholar 

  • McGettrick AF, O’Neill LAJ (2007) Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis. Br J Haematol 139(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • McInnes IB et al (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat Med 3(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Mehraj U, Qayoom H, Mir MA (2021a) Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer 28(3):539–555. https://doi.org/10.1007/s12282-021-01231-2. Epub 2021 Mar 4

    Article  PubMed  Google Scholar 

  • Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, Nasser MW, Haris M, Batra SK, Alshehri B, Al-Baradie RS, Mir MA, Wani NA (2021b) The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol (Dordr) 44(6):1209–1229. https://doi.org/10.1007/s13402-021-00634-9. Epub 2021 Sep 16

    Article  PubMed  Google Scholar 

  • Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA (2022) Chemokines in triple-negative breast cancer heterogeneity: new challenges for clinical implications. Semin Cancer Biol 86(Pt 2):769–783. https://doi.org/10.1016/j.semcancer.2022.03.008. Epub 2022 Mar 9

    Article  CAS  PubMed  Google Scholar 

  • Melo RCN et al (2005) Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6(10):866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer D et al (2011) Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood 117(3):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller A et al (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir MA (2015a) Costimulation immunotherapy in infectious diseases. In: Mir MA (ed) Develo** costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 83–129

    Chapter  Google Scholar 

  • Mir MA (2015b) Costimulation immunotherapy in allergies and asthma. In: Mir MA (ed) Develo** costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 131–184

    Chapter  Google Scholar 

  • Mir MA (2015c) T-cell Costimulation and its applications in diseases. In: Mir MA (ed) Develo** costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 255–292

    Chapter  Google Scholar 

  • Mir M (2021) Combination therapies and their effectiveness in breast cancer treatment. https://doi.org/10.52305/WXJL6770

  • Mir MA (2022) Role of regulatory T cells in cancer. In: Mir MA (ed) Role of tumor microenvironment in breast cancer and targeted therapies. Academic Press, London, pp 113–136

    Chapter  Google Scholar 

  • Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA (2020) Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets 20(8):586–602. https://doi.org/10.2174/1570163817666200518081955. PMID: 32418525

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Sofi S, Qayoom H (2022a) The interplay of immunotherapy, chemotherapy, and targeted therapy in tripple negative breast cancer (TNBC), chapter-6. In: Combinational therapy in triple negative breast cancer. Elsevier Inc, San Diego, pp 149–176. https://doi.org/10.1016/B978-0-323-96136-3.00001-7. ISBN: 978-0-323-96136-3

    Chapter  Google Scholar 

  • Mir MA et al (2022b) Targeting biologically specific molecules in triple negative breast cancer (TNBC). In: Mir MA (ed) Combinational therapy in triple negative breast cancer. Academic Press, pp 177–200

    Chapter  Google Scholar 

  • Mir MA, Sofi S, Qayoom H (2022c) Role of immune system in TNBC, chapter-5. In: Combinational therapy in triple negative breast cancer. Elsevier Inc, San Diego, pp 121–148. https://doi.org/10.1016/B978-0-323-96136-3.00014-5. ISBN: 978-0-323-96136-3

    Chapter  Google Scholar 

  • Mir MA, Qayoom H, Sofi S, Jan N (2023) Proteomics: a groundbreaking development in cancer biology. In: Proteomics. Academic Press, pp 31–53

    Chapter  Google Scholar 

  • Mir WR, Bhat BA, Kumar A, Dhiman R, Alkhanani M, Almilaibary A, Dar MY, Ganie SA, Mir MA (2023) Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei munz constituents on breast carcinoma. Front Pharmacol 14:1135898. https://doi.org/10.3389/fphar.2023.1135898. PMID:37724182; PMCID: PMC10505441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollinedo F et al (2003) Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. J Immunol 170(2):1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Mousa A, Bakhiet M (2013) Role of cytokine signaling during nervous system development. Int J Mol Sci 14(7):13931–13957

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami T et al (2002) Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 62(24):7328–7334

    CAS  PubMed  Google Scholar 

  • Nicolini A et al (2006) Cytokines in breast cancer. Cytokine Growth Factor Rev 17(5):325–337

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771

    Article  CAS  PubMed  Google Scholar 

  • Omokehinde T, Johnson RW (2020) GP130 cytokines in breast cancer and bone. Cancers (Basel) 12(2):326

    Article  CAS  PubMed  Google Scholar 

  • Palomino DCT, Marti LC (2015) Chemokines and immunity. Einstein (São Paulo) 13:469–473

    Article  PubMed  Google Scholar 

  • Parker BS et al (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144

    Article  PubMed  Google Scholar 

  • Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Investig Dermatol 118(6):915–922

    Article  CAS  PubMed  Google Scholar 

  • Pearce EL et al (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernis A et al (1995) γ chain-associated cytokine receptors signal through distinct transducing factors. J Biol Chem 270(24):14517–14522

    Article  CAS  PubMed  Google Scholar 

  • Phillips RE (2002) Immunology taught by Darwin. Nat Immunol 3(11):987–989

    Article  CAS  PubMed  Google Scholar 

  • Phythian-Adams AT et al (2010) CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med 207(10):2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskin G et al (2005) Neutrophils infiltrating ultraviolet B-irradiated normal human skin display high IL-10 expression. Arch Dermatol Res 296(7):339–342

    Article  CAS  PubMed  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  CAS  PubMed  Google Scholar 

  • Poli V, Camporeale A (2015) STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol 5:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradelli E et al (2009) Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int J Cancer 125(11):2586–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prashant A et al (2013) Comparative assessment of cytokines and other inflammatory markers for the early diagnosis of neonatal sepsis–a case control study. PLoS One 8(7):e68426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA (2023a) Mechanistic elucidation of Juglanthraquinone C targeting breast cancer: a network pharmacology-based investigation. Saudi. J Biol Sci 30(7):103705. https://doi.org/10.1016/j.sjbs.2023.103705. Epub 2023 Jun 15. PMID: 37425621; PMCID: PMC10329161

    Article  CAS  Google Scholar 

  • Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA (2023b) A network pharmacology-based investigation of brugine reveals its multi-target molecular mechanism against breast cancer. Med Oncol 40(7):202. https://doi.org/10.1007/s12032-023-02067-w. PMID: 37308611

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Wani NA, Alshehri B, Mir MA (2021) An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 17(31):4185–4206. https://doi.org/10.2217/fon-2021-0172. Epub 2021 Aug 3

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Mehraj U, Sofi S, Aisha S, Almilaibary A, Alkhanani M, Mir MA (2022) Expression patterns and therapeutic implications of CDK4 across multiple carcinomas: a molecular docking and MD simulation study. Med Oncol 39(10):158. https://doi.org/10.1007/s12032-022-01779-9

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Sofi S, Mir MA (2023) Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res. https://doi.org/10.1007/s12026-023-09376-2. Epub ahead of print

  • Raman D et al (2011) Chemokines in health and disease. Exp Cell Res 317(5):575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relkin N et al (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(Suppl_3):S2–S4

    Article  Google Scholar 

  • Reyes A et al (2020) Contribution of hypoxia inducible factor-1 during viral infections. Virulence 11(1):1482–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy J-P et al (2016) The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: implications for immunotherapy. Int J Tryptophan Res 9:67–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryffel B et al (1997) Lack of type 2 T cell-independent B cell responses and defect in isotype switching in TNF-lymphotoxin alpha-deficient mice. J Immunol 158(5):2126–2133

    Article  CAS  PubMed  Google Scholar 

  • Sabat R et al (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21(5):331–344

    Article  CAS  PubMed  Google Scholar 

  • Salanga CL, Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317(5):590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J et al (2018) Anti-cancer therapy with TNF α and IFN γ: a comprehensive review. Cell Prolif 51(4):e12441

    Article  PubMed  PubMed Central  Google Scholar 

  • Shizuo A, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4(7):499–511

    Article  Google Scholar 

  • Shurety W et al (2000) Localization and post-Golgi trafficking of tumor necrosis factor-alpha in macrophages. J Interf Cytokine Res 20(4):427–438

    Article  CAS  Google Scholar 

  • Simonetti O et al (2006) Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur J Cancer 42(8):1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Singh S et al (2011) CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvasc Res 82(3):318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisler JD et al (2015) The signal transducer and activator of transcription 1 (STAT1) inhibits mitochondrial biogenesis in liver and fatty acid oxidation in adipocytes. PLoS One 10(12):e0144444

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofi S, Mehraj U, Qayoom H, Aisha S, Almilaibary A, Alkhanani M, Mir MA (2022) Targeting cyclin-dependent kinase 1 (CDK1) in cancer: molecular docking and dynamic simulations of potential CDK1 inhibitors. Med Oncol 39(9):133. https://doi.org/10.1007/s12032-022-01748-2. PMID: 35723742; PMCID: PMC9207877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofi S, Jan N, Qayoom H, Alkhanani M, Almilaibary A, Ahmad MM (2023) Elucidation of interleukin-19 as a therapeutic target for breast cancer by computational analysis and experimental validation. Saudi J Biol Sci 30(9):103774. https://doi.org/10.1016/j.sjbs.2023.103774. Epub 2023 Aug 11. PMID: 37675062; PMCID: PMC10477739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer LA et al (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci 103(9):3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78(6):539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JC, Griffiths GM (2007) Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol 23:495–517

    Article  CAS  PubMed  Google Scholar 

  • Strieter RM et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270(45):27348–27357

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kishimoto T (2014) The biology and medical implications of interleukin-6. Cancer Immunol Res 2(4):288–294

    Article  CAS  PubMed  Google Scholar 

  • Tannahill GM et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Meide PH, Schellekens H (1996) Cytokines and the immune response. Biotherapy 8(3):243–249

    Article  PubMed  Google Scholar 

  • Velasco-Velázquez M et al (2014) The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 18(11):1265–1275

    Article  PubMed  Google Scholar 

  • Verschueren H et al (1994) Metastatic competence of BW5147 T-lymphoma cell lines is correlated with in vitro invasiveness, motility and F-actin content. J Leukoc Biol 55(4):552–556

    Article  CAS  PubMed  Google Scholar 

  • Walser TC et al (2006) Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66(15):7701–7707

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2006) A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66(6):3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Wang D et al (2019) Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling. J Immunother Cancer 7(1):1–15

    Article  CAS  Google Scholar 

  • Watford WT et al (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 14(5):361–368

    Article  CAS  PubMed  Google Scholar 

  • Weber KSC et al (1999) Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19(9):2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Wiley HE et al (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93(21):1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Willrich MAV et al (2015) Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Transl Res 165(2):270–282

    Article  CAS  PubMed  Google Scholar 

  • Wurbel MA et al (2000) The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double-and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol 30(1):262–271

    Article  CAS  PubMed  Google Scholar 

  • **ao G et al (2017) CXCR4/let-7a axis regulates metastasis and chemoresistance of pancreatic cancer cells through targeting HMGA2. Cell Physiol Biochem 43(2):840–851

    Article  CAS  PubMed  Google Scholar 

  • Xu M et al (2021) Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif 54(10):e13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2011) Effect of chemokine receptors CCR7 on disseminated behavior of human T cell lymphoma: clinical and experimental study. J Exp Clin Cancer Res 30(1):1–9

    Article  Google Scholar 

  • Yi M et al (2019) 6-Phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 and 4: a pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 20:1–13

    Article  PubMed  Google Scholar 

  • Yolcu ES et al (2008) Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression. Immunol Cell Biol 86(8):650–658

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R et al (1998) EBI1-ligand chemokine (ELC) attracts a broad spectrum of lymphocytes: activated T cells strongly up-regulate CCR7 and efficiently migrate toward ELC. Int Immunol 10(7):901–910

    Article  CAS  PubMed  Google Scholar 

  • Zabel BA et al (1999) Human G protein–coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine–mediated chemotaxis. J Exp Med 190(9):1241–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XP et al (2017) Role of CCL20/CCR6 and the ERK signaling pathway in lung adenocarcinoma. Oncol Lett 14(6):8183–8189

    PubMed  PubMed Central  Google Scholar 

  • Zhao G-N et al (2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta 1852(2):365–378

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A et al (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Elsevier, San Diego, pp 97–166

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Rashid, M., Jan, N. (2023). Cytokines and Chemokines in Tumor Growth and Progression. In: Mir, M.A. (eds) Cytokine and Chemokine Networks in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-4657-0_2

Download citation

Publish with us

Policies and ethics

Navigation