Simulation on Mixed-Control of Dissolution and Boundary Nucleation and Growth Mechanisms of Tricalcium Silicate

  • Chapter
  • First Online:
Simulation on Hydration of Tricalcium Silicate in Cement Clinker
  • 112 Accesses

Abstract

The C3S hydration, like any other hydration reaction, involves the following unit processes: (1) reactions at the phase boundaries; (2) nucleation; (3) transport of mass through diffusion; and (4) crystal growth. These unit processes can occur simultaneously and interact with each other, making the whole hydration process rather complex and therefore bringing great challenges for understanding the hydration mechanisms of C3S and cement. So far, the mechanisms controlling the induction period and main hydration peak in C3S hydration have not been fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Costoya Fernández, Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. Thesis, EPFL, Lausanne (2008)

    Google Scholar 

  2. A. Wang, C. Zhang, N. Zhang, Study of the influence of the particle size distribution on the properties of cement. Cem. Concr. Res. 27, 685–695 (1997)

    Article  Google Scholar 

  3. P. Juilland, E. Gallucci, R. Flatt, K. Scrivener, Dissolution theory applied to the induction period in alite hydration. Cem. Concr. Res. 40, 831–844 (2010)

    Article  Google Scholar 

  4. P. Juilland, E. Gallucci, Morpho-topological investigation of the mechanisms and kinetic regimes of alite dissolution. Cem. Concr. Res. 76, 180–191 (2015)

    Article  Google Scholar 

  5. D.P. Bentz, CEMHYD3D: a three-dimensional cement hydration and microstructure development modeling package. Version 2.0. National Institute of Standards and Technology Interagency Report 6485 (2000)

    Google Scholar 

  6. L. Nicoleau, A. Nonat, D. Perrey, The di- and tricalcium silicate dissolutions. Cem. Concr. Res. 47, 14–30 (2013)

    Article  Google Scholar 

  7. M.T.J. Pan, J. Tong, Fundamentals of Materials Science (Tsinghua University Press, Bei**g, 1998) (in Chinese)

    Google Scholar 

  8. A.C. Lasaga, Kinetic Theory in the Earth Sciences, 1st edn. (Princeton University Press, Princeton, 2014)

    Google Scholar 

  9. L. Nicoleau, A. Nonat, A new view on the kinetics of tricalcium silicate hydration. Cem. Concr. Res. 86, 1–11 (2016)

    Article  Google Scholar 

  10. V. Robin, B. Wild, D. Daval, M. Pollet-Villard, A. Nonat, L. Nicoleau, Experimental study and numerical simulation of the dissolution anisotropy of tricalcium silicate. Chem. Geol. 497, 64–73 (2018)

    Article  Google Scholar 

  11. K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Google Scholar 

  12. Z. Zhou, H. Chen, Z. Li, H. Li, Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method. Cem. Concr. Res. 68, 105–111 (2015)

    Article  Google Scholar 

  13. T. Zhang, H. Chen, X. Li, Z. Zhu, Hydration behavior of magnesium potassium phosphate cement and stability analysis of its hydration products through thermodynamic modeling. Cem. Concr. Res. 98, 101–110 (2017)

    Article  Google Scholar 

  14. J.W. Bullard, G.W. Scherer, J.J. Thomas, Time dependent driving forces and the kinetics of tricalcium silicate hydration. Cem. Concr. Res. 74, 26–34 (2015)

    Article  Google Scholar 

  15. P. Juilland, L. Nicoleau, R.S. Arvidson, E. Gallucci, Advances in dissolution understanding and their implications for cement hydration. RILEM Tech. Lett. 2, 90–98 (2017)

    Article  Google Scholar 

  16. A.C. Lasaga, A. Luttge, Variation of crystal dissolution rate based on a dissolution stepwave model. Science 291, 2400–2404 (2001)

    Article  Google Scholar 

  17. L. Nicoleau, M.A. Bertolim, Analytical model for the alite (C3S) dissolution topography. J. Am. Ceram. Soc. 99, 773–786 (2016)

    Google Scholar 

  18. A.C. Lasaga, A.E. Blum, Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50, 2363–2379 (1986)

    Article  Google Scholar 

  19. I. Kurganskaya, A. Luttge, A comprehensive stochastic model of phyllosilicate dissolution: structure and kinematics of etch pits formed on muscovite basal face. Geochim. Cosmochim. Acta 120, 545–560 (2013)

    Article  Google Scholar 

  20. A. Luttge, Etch pit coalescence, surface area, and overall mineral dissolution rates. Am. Mineral. 90, 1776–1783 (2005)

    Google Scholar 

  21. C. Naber, F. Bellmann, T. Sowoidnich, F. Goetz-Neunhoeffer, J. Neubauer, Alite dissolution and C-S-H precipitation rates during hydration. Cem. Concr. Res. 115, 283–293 (2019)

    Article  Google Scholar 

  22. A. Nonat, The structure and stoichiometry of C-S-H. Cem. Concr. Res. 34, 1521–1528 (2004)

    Article  Google Scholar 

  23. L. Liu, C. Sun, G. Geng, P. Feng, J. Li, R. Dahn, Influence of decalcification on structural and mechanical properties of synthetic calcium silicate hydrate (C-S-H). Cem. Concr. Res. 123 (2019)

    Google Scholar 

  24. H.F.W. Taylor, Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures. J. Chem. Soc. 3682–3690 (1950) (Resumed)

    Google Scholar 

  25. J.A. Gard, H.F.W. Taylor, Calcium silicate hydrate (II) (“C-S-H(II)”). Cem. Concr. Res. 6, 667–677 (1976)

    Article  Google Scholar 

  26. Z.Q. Zhang, F.H. Han, P.Y. Yan, Modelling the dissolution and precipitation process of the early hydration of C3S. Cem. Concr. Res. 136, 106174 (2020)

    Article  Google Scholar 

  27. D. Turnbull, Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950)

    Article  Google Scholar 

  28. O. Söhnel, Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. J. Cryst. Growth 57, 101–108 (1982)

    Article  Google Scholar 

  29. N. Tenoutasse, A. De Donder, The kinetics and mechanism of hydration of tricalcium silicate. Silic. Indus. 35 (1970)

    Google Scholar 

  30. J.J. Thomas, A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration. J. Am. Ceram. Soc. 90, 3282–3288 (2007)

    Article  Google Scholar 

  31. J.W. Cahn, The kinetics of grain boundary nucleated reactions. Acta Metall. 4, 449–459 (1956)

    Article  Google Scholar 

  32. G.W. Scherer, J. Zhang, J.J. Thomas, Nucleation and growth models for hydration of cement. Cem. Concr. Res. 42, 982–993 (2012)

    Article  Google Scholar 

  33. D.P. Bentz, CEMHYD3D: a three-dimensional cement hydration and microstructure development modeling package. Version 3.0. National Institute of Standards and Technology Interagency Report 7232 (2005)

    Google Scholar 

  34. D. Parkhurst, Description of input and examples for PHREEQC Version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Denver (2013)

    Google Scholar 

  35. S.R. Charlton, D.L. Parkhurst, Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput. Geosci. 37, 1653–1663 (2011)

    Article  Google Scholar 

  36. F. Bernard, S. Kamali-Bernard, Performance simulation and quantitative analysis of cement-based materials subjected to leaching. Comput. Mater. Sci. 50, 218–226 (2010)

    Article  Google Scholar 

  37. P.K. Mehta, P.J.M. Monteiro, Concrete Microstructure Properties and Materials (McGraw-Hill Education, New York, 2007)

    Google Scholar 

  38. S. Bishnoi, K.L. Scrivener, µic: a new platform for modelling the hydration of cements. Cem. Concr. Res. 39, 266–274 (2009)

    Article  Google Scholar 

  39. S. Bishnoi, K.L. Scrivener, Studying nucleation and growth kinetics of alite hydration using μic. Cem. Concr. Res. 39, 849–860 (2009)

    Article  Google Scholar 

  40. D. Shen, X. Shi, Y. Ji, F. Yin, Strain rate effect on bond stress–slip relationship between basalt fiber-reinforced polymer sheet and concrete. J. Reinf. Plast. Compos. 34, 547–563 (2015)

    Article  Google Scholar 

  41. H.F.W. Taylor, Cement Chemistry, 2nd edn. (Thomas Telford, London, 1997)

    Book  Google Scholar 

  42. F. Bellmann, G.W. Scherer, Analysis of C-S-H growth rates in supersaturated conditions. Cem. Concr. Res. 103, 236–244 (2018)

    Article  Google Scholar 

  43. A. Lüttge, Crystal dissolution kinetics and Gibbs free energy. J. Electron Spectrosc. Relat. Phenom. 150, 248–259 (2006)

    Article  Google Scholar 

  44. C. Naber, F. Bellmann, J. Neubauer, Influence of w/s ratio on alite dissolution and C-S-H precipitation rates during hydration. Cem. Concr. Res. 134 (2020)

    Google Scholar 

  45. J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, J.J. Thomas, Mechanisms of cement hydration. Cem. Concr. Res. 41, 1208–1223 (2011)

    Article  Google Scholar 

  46. P. Termkhajornkit, Q.H. Vu, R. Barbarulo, S. Daronnat, G. Chanvillard, Dependence of compressive strength on phase assemblage in cement pastes: beyond gel–space ratio—experimental evidence and micromechanical modeling. Cem. Concr. Res. 56, 1–11 (2014)

    Article  Google Scholar 

  47. A. Bazzoni, Study of early hydration mechanisms of cement by means of electron microscopy. Thesis, EPFL, Lausanne (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, D., Wang, X. (2024). Simulation on Mixed-Control of Dissolution and Boundary Nucleation and Growth Mechanisms of Tricalcium Silicate. In: Simulation on Hydration of Tricalcium Silicate in Cement Clinker. Springer, Singapore. https://doi.org/10.1007/978-981-99-4598-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4598-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4597-9

  • Online ISBN: 978-981-99-4598-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation