DISS: A Discrete Input-Space Sampling Path Planning and Obstacle Avoidance Strategy for Swarm Robotics

  • Conference paper
  • First Online:
Artificial Intelligence Doctoral Symposium (AID 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1852))

Included in the following conference series:

  • 171 Accesses

Abstract

In this research, the path planning and obstacle avoidance problem for Swarm Robotics is addressed. Our contribution consists in a Discrete adaptation of the well-known Input-Space Sampling method (DISS). The DISS is integrated into a Swarm Intelligence approach, named Multi-Bee Swarm Optimization (MBSO) that must be embedded into autonomous mobile robots. The MBSO algorithm, in turn, is multi-swarm adaptation of the well-known Bee Swarm Optimization. It aims to resolve the Target Detection Problem by exploring a 2D discrete, complex, and unknown environment. Thus, the search strategy must be provided with an adequate path planning and obstacles avoidance strategy which is a determinant factor to the robots’ efficiency in their search mission. The experimental results show that, by varying the obstacle density in the search environments MBSO’s performances are not much affected. Our path planning and obstacle avoidance strategy offer an efficient and effective navigation capability to the robots of MBSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965). https://doi.org/10.1147/sj.41.0025

    Article  Google Scholar 

  2. Dadgar, M., Jafari, S., Hamzeh, A.: A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing 177, 62–74 (Feb 2016). https://doi.org/10.1016/j.neucom.2015.11.007

  3. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005). https://doi.org/10.1007/11494669_39

    Chapter  Google Scholar 

  4. Houacine, N.A., Drias, H.: Self-parameterized swarm intelligence algorithms for targets’ detection in complex and unknown environments. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, T.-P. (eds.) HIS 2020. AISC, vol. 1375, pp. 690–699. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73050-5_67

    Chapter  Google Scholar 

  5. **, S., Choi, B.-J.: Fuzzy logic system based obstacle avoidance for a mobile robot. In: Kim, T., Adeli, H., Stoica, A., Kang, B.-H. (eds.) CA/CES3 -2011. CCIS, vol. 256, pp. 1–6. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-26010-0_1

    Chapter  Google Scholar 

  6. Kelly, A., Stentz, A.: Rough terrain autonomous mobility-part 1: a theoretical analysis of requirements. Auton. Robot. 5(2), 129–161 (1998). https://doi.org/10.1023/a:1008801421636

    Article  Google Scholar 

  7. Khaksar, W., Sahari, K.S.M., Hong, T.S.: Application of sampling-based motion planning algorithms in autonomous vehicle navigation. In: Autonomous Vehicle. InTech, September 2016. https://doi.org/10.5772/64730

  8. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers (1985). https://doi.org/10.1109/robot.1985.1087247

  9. Larsen, L., Kim, J., Kupke, M., Schuster, A.: Automatic path planning of industrial robots comparing sampling-based and computational intelligence methods. Procedia Manufacturing 11, 241–248 (2017). https://doi.org/10.1016/j.promfg.2017.07.237

    Article  Google Scholar 

  10. Li, G., Tong, S., Cong, F., Yamashita, A., Asama, H.: Improved artificial potential field-based simultaneous forward search method for robot path planning in complex environment. In: 2015 IEEE/SICE International Symposium on System Integration (SII). IEEE, December 2015. https://doi.org/10.1109/sii.2015.7405075

  11. Li, H.: Robotic path planning strategy based on improved artificial potential field. In: 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE), pp. 67–71 (2020). https://doi.org/10.1109/ICAICE51518.2020.00019

  12. Park, M.G., Lee, M.C.: A new technique to escape local minimum in artificial potential field based path planning. KSME Int. J. 17(12), 1876–1885 (2003). https://doi.org/10.1007/bf02982426

    Article  Google Scholar 

  13. Surynek, P.: Abstract path planning for multiple robots: a theoretical study (2010). https://doi.org/10.1.1.173.4771. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.4771 &rep=rep1 &type=pdf

  14. Tang, H., Sun, W., Yu, H., Lin, A., Xue, M., Song, Y.: A novel hybrid algorithm based on PSO and FOA for target searching in unknown environments. Appl. Intell. 49(7), 2603–2622 (2019). https://doi.org/10.1007/s10489-018-1390-0

    Article  Google Scholar 

  15. Trianni, V., Campo, A.: Fundamental collective behaviors in swarm robotics. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1377–1394. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_71

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naila Aziza Houacine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Houacine, N.A., Drias, H. (2023). DISS: A Discrete Input-Space Sampling Path Planning and Obstacle Avoidance Strategy for Swarm Robotics. In: Drias, H., Yalaoui, F., Hadjali, A. (eds) Artificial Intelligence Doctoral Symposium. AID 2022. Communications in Computer and Information Science, vol 1852. Springer, Singapore. https://doi.org/10.1007/978-981-99-4484-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4484-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4483-5

  • Online ISBN: 978-981-99-4484-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation