Graphene Oxide and Its Derivatives as Additives in Polymeric Membranes for Water Treatment Applications

  • Chapter
  • First Online:
Graphene and its Derivatives (Volume 2)

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 144 Accesses

Abstract

Polymeric membranes have a great potential for water treatment applications. However, their inherent hydrophobicity results in membrane fouling, limiting their separation performance. Therefore, polymeric membranes are modified by a blending approach to improve their physicochemical properties, which in turn improve their separation characteristics. Graphene oxide (GO) nanosheet is a promising additive used for polymer blending. Owing to its chemical structure and functionalities, it is compatible with the host polymer, resulting in high-performing membranes for water treatment. It imparts several essential properties to the resulting membranes, such as enhanced hydrophilicity, negatively charged surface, improved water permeance, and antifouling properties. In this chapter, we will present the state of the art of the polymeric membranes modified by GO nanosheet and their derivatives (e.g., reduced GO, functional GO, and GO-based nanohybrid) as additives, how these additives improve the membrane properties, and the separation performance efficacy of the resulting polymeric mixed matrix membranes in water treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Modi A, Bellare J (2020) Efficient removal of 2, 4-dichlorophenol from contaminated water and alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite hollow fiber membranes. J Water Proc Eng 33:101113

    Article  Google Scholar 

  2. Modi A, Bellare J (2020) Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Sep Purif Technol 249:117160

    Article  CAS  Google Scholar 

  3. Sainath K, Modi A, Bellare J (2020) In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation. J Membr Sci 614:118506

    Article  CAS  Google Scholar 

  4. Sainath K, Kumari P, Bellare J (2021) Zeolitic imidazolate framework-8 nanoparticles coated composite hollow fiber membranes for CO2/CH4 separation. J Environ Chem Eng 9(5):106052

    Article  CAS  Google Scholar 

  5. Modi A, Jiang Z, Kasher R (2021) Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water. Chem Eng J 133513

    Google Scholar 

  6. Modi A, Verma SK, Bellare J (2017) Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) do** improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes. J Colloid Interface Sci 504:86–100

    Article  CAS  PubMed  Google Scholar 

  7. Modi A, Verma SK, Bellare J (2018) Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application. Colloids Surf B 167:457–467

    Article  CAS  Google Scholar 

  8. Modi A, Verma SK, Bellare J (2018) Graphene oxide-do** improves the biocompatibility and separation performance of polyethersulfone hollow fiber membranes for bioartificial kidney application. J Colloid Interface Sci 514:750–759

    Article  CAS  PubMed  Google Scholar 

  9. Modi A, Verma SK, Bellare J (2020) Surface-functionalized poly(Ether Sulfone) composite hollow fiber membranes with improved biocompatibility and uremic toxins clearance for bioartificial kidney application. ACS Appl Bio Mater 3(3):1589–1597

    Article  CAS  PubMed  Google Scholar 

  10. Zaidi J, Matsuura T (2008) Polymer membranes for fuel cells. Springer

    Google Scholar 

  11. Modi A, Singh S, Verma N (2017) Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode. Int J Hydrogen Energy 42(5):3271–3280

    Article  CAS  Google Scholar 

  12. Baker RW (2012) Membrane technology and applications. John Wiley & Sons

    Book  Google Scholar 

  13. Abetz V, Brinkmann T, Sözbilir M (2021) Fabrication and function of polymer membranes. Chem Teach Int 3(2):141–154

    Article  Google Scholar 

  14. Modi A, Bellare J (2019) Copper sulfide nanoparticles/carboxylated graphene oxide nanosheets blended polyethersulfone hollow fiber membranes: development and characterization for efficient separation of oxybenzone and bisphenol A from water. Polymer 163:57–67

    Article  CAS  Google Scholar 

  15. Modi A, Bellare J (2019) Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid. J Water Proc Eng 29:100783

    Article  Google Scholar 

  16. Modi A, Bellare J (2019) Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets. Int J Biol Macromol 135:798–807

    Article  CAS  PubMed  Google Scholar 

  17. Modi A, Bellare J (2019) Efficiently improved oil/water separation using high flux and superior antifouling polysulfone hollow fiber membranes modified with functionalized carbon nanotubes/graphene oxide nanohybrid. J Environ Chem Eng 7(2):102944

    Article  Google Scholar 

  18. Kumari P, Modi A, Bellare J (2020) Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative. Sep Purif Technol 235:116199

    Article  CAS  Google Scholar 

  19. Rathinam K, Modi A, Schwahn D, Oren Y, Kasher R (2022) Surface grafting with diverse charged chemical groups mitigates calcium phosphate scaling on reverse osmosis membranes during municipal wastewater desalination. J Membr Sci 647:120310

    Article  CAS  Google Scholar 

  20. Manna P, Bernstein R, Kasher R (2022) Stepwise synthesis of polyacrylonitrile-supported oligoamide membranes with selective dye–salt separation. J Membr Sci 643:120035

    Article  CAS  Google Scholar 

  21. Manna P, Tiraferri A, Sangermano M, Bernstein R, Kasher R (2019) Stepwise synthesis of oligoamide coating on a porous support: fabrication of a membrane with controllable transport properties. Sep Purif Technol 213:11–18

    Article  CAS  Google Scholar 

  22. Shahkaramipour N, Tran TN, Ramanan S, Lin H (2017) Membranes with surface-enhanced antifouling properties for water purification. Membranes 7(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhanvase BA, Sonawane S, Pawade VB, Pandit AB (2021) Handbook of nanomaterials for wastewater treatment: fundamentals and scale up issues. Elsevier

    Google Scholar 

  24. Huang H, Ying Y, Peng X (2014) Graphene oxide nanosheet: an emerging star material for novel separation membranes. J Mater Chem A 2(34):13772–13782

    Article  CAS  Google Scholar 

  25. Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259. https://doi.org/10.1098/rstl.1859.0013

  26. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft 31(2):1481–1487. https://doi.org/10.1002/cber.18980310237

  27. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. https://doi.org/10.1021/ja01539a017

  28. Zahri K, Wong KC, Goh PS, Ismail AF (2016) Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation. RSC Adv 6(92):89130–89139

    Article  CAS  Google Scholar 

  29. Wang Z, Yu H, **a J, Zhang F, Li F, **a Y, Li Y (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54

    Article  CAS  Google Scholar 

  30. Zhao C, Xu X, Chen J, Yang F (2013) Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J Environ Chem Eng 1(3):349–354

    Article  CAS  Google Scholar 

  31. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    Article  CAS  Google Scholar 

  32. Bala S, Nithya D, Doraisamy M (2018) Exploring the effects of graphene oxide concentration on properties and antifouling performance of PEES/GO ultrafiltration membranes. High Perform Polym 30(3):375–383

    Article  CAS  Google Scholar 

  33. Mukherjee R, Bhunia P, De S (2016) Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem Eng J 292:284–297

    Article  CAS  Google Scholar 

  34. Marjani A, Nakhjiri AT, Adimi M, Jirandehi HF, Shirazian S (2020) Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci Rep 10(1):2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alammar A, Park S-H, Williams CJ, Derby B, Szekely G (2020) Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment. J Membr Sci 603:118007

    Article  CAS  Google Scholar 

  36. Alnoor O, Laoui T, Ibrahim A, Kafiah F, Nadhreen G, Akhtar S, Khan Z (2020) Graphene oxide-based membranes for water purification applications: effect of plasma treatment on the adhesion and stability of the synthesized membranes. Membranes 10(10):292

    Article  CAS  PubMed Central  Google Scholar 

  37. Huang L, Chen J, Gao T, Zhang M, Li Y, Dai L, Qu L, Shi G (2016) Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Adv Mater 28(39):8669–8674

    Article  CAS  PubMed  Google Scholar 

  38. Latorrata S, Cristiani C, Basso Peressut A, Brambilla L, Bellotto M, Dotelli G, Finocchio E, Gallo Stampino P, Ramis G (2020) Reduced graphene oxide membranes as potential self-assembling filter for wastewater treatment. Minerals 11(1):15

    Article  Google Scholar 

  39. Pei J, Zhang X, Huang L, Jiang H, Hu X (2016) Fabrication of reduced graphene oxide membranes for highly efficient water desalination. RSC Adv 6(104):101948–101952

    Article  CAS  Google Scholar 

  40. Wang Y, Shang Y, Gao Z, Qi Y, Li M, Men Y, Huang H (2021) Modulation of reduced graphene oxide membrane for low-fouling wastewater filtration: membrane structure, wastewater property, and DFT calculation. J Clean Prod 321:128982

    Article  CAS  Google Scholar 

  41. Zhuang P, Fu H, Xu N, Li B, Xu J, Zhou L (2020) Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect. Nanophotonics 9(15):4601–4608

    Article  CAS  Google Scholar 

  42. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  43. Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2(7):2643–2662

    Article  CAS  Google Scholar 

  44. Vinothkannan M, Karthikeyan C, Gnana kumar G, Kim AR, Yoo DJ (2015) One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 136:256–264

    Google Scholar 

  45. Chang DW, Choi H-J, Jeon I-Y, Seo J-M, Dai L, Baek J-B (2014) Solvent-free mechanochemical reduction of graphene oxide. Carbon 77:501–507

    Article  CAS  Google Scholar 

  46. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21(13):2950–2956

    Article  CAS  Google Scholar 

  47. Liu P, Huang Y, Wang L (2013) A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater Lett 91:125–128

    Article  CAS  Google Scholar 

  48. Aziz M, Arifin NFT, Lau W-J (2019) Preparation and characterization of improved hydrophilic polyethersulfone/reduced graphene oxide membrane. Malaysian J Anal Sci 23(3):479–487

    Google Scholar 

  49. Fryczkowska B, Przywara L (2021) Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application. Desalin Water Treat 214:252–262

    Article  CAS  Google Scholar 

  50. Modi A, Verma SK, Bellare J (2018) Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: a potential membrane material for bioartificial liver application. Mater Sci Eng C 91:524–540

    Article  CAS  Google Scholar 

  51. Fu D, Han G, Chang Y, Dong J (2012) The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Mater Chem Phys 132(2–3):673–681

    Article  CAS  Google Scholar 

  52. Ma Y-X, Kou Y-L, **ng D, ** P-S, Shao W-J, Li X, Du X-Y, La P-Q (2017) Synthesis of magnetic graphene oxide grafted polymaleicamide dendrimer nanohybrids for adsorption of Pb(II) in aqueous solution. J Hazard Mater 340:407–416

    Article  CAS  PubMed  Google Scholar 

  53. Mohan S, Kumar V, Singh DK, Hasan SH (2017) Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: Isotherm, kinetic and thermodynamic modeling of adsorption. J Environ Chem Eng 5(3):2259–2273

    Article  CAS  Google Scholar 

  54. Wei N, Zheng X, Ou H, Yu P, Li Q, Feng S (2019) Fabrication of an amine-modified ZIF-8@GO membrane for high-efficiency adsorption of copper ions. New J Chem 43(14):5603–5610

    Article  CAS  Google Scholar 

  55. Kumar M, Gholamvand Z, Morrissey A, Nolan K, Ulbricht M, Lawler J (2016) Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO–TiO2 nanocomposite and polysulfone for humic acid removal. J Membr Sci 506:38–49

    Article  CAS  Google Scholar 

  56. Mahlangu OT, Nackaerts R, Thwala JM, Mamba BB, Verliefde ARD (2017) Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J Membr Sci 524:43–55

    Article  CAS  Google Scholar 

  57. Ahmad N, Samavati A, Nordin NAHM, Jaafar J, Ismail AF, Malek NANN (2020) Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Sep Purif Technol 239:116554

    Article  CAS  Google Scholar 

  58. Modi A, Bellare J (2020) Amoxicillin removal using polyethersulfone hollow fiber membranes blended with ZIF-L nanoflakes and cGO nanosheets: improved flux and fouling-resistance. J Environ Chem Eng 8(4):103973. https://doi.org/10.1016/j.jece.2020.103973

  59. Vun CP, Mohammad AW, Haan TY, Mahmoudi E (2017) Evaluation of iron oxide decorated on graphene oxide (Fe3O4/GO) nanohybrid incorporated in PSF membrane at different molar ratios for congo red rejection. J Teknol 79(1–2)

    Google Scholar 

  60. Zhu Z, Jiang J, Wang X, Huo X, Xu Y, Li Q, Wang L (2017) Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles. Chem Eng J 314:266–276

    Article  CAS  Google Scholar 

  61. Albers RF, Bini RA, Souza JB, Machado DT, Varanda LC (2019) A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials. Carbon 143:73–84

    Article  CAS  Google Scholar 

  62. Zhang P, Huang Y, Lu X, Zhang S, Li J, Wei G, Su Z (2014) One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and raman detection applications. Langmuir 30(29):8980–8989

    Article  CAS  PubMed  Google Scholar 

  63. Kar P, Sardar S, Liu B, Sreemany M, Lemmens P, Ghosh S, Pal SK (2016) Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment. Sci Technol Adv Mater 17(1):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park CM, Heo J, Wang D, Su C, Yoon Y (2018) Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl Catal B 225:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang Y, Guo H, **ao L, Yu S, Gao N, Wang Y (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf A 424:74–80

    Article  CAS  Google Scholar 

  66. Tien HN, Luan VH, Hoa LT, Khoa NT, Hahn SH, Chung JS, Shin EW, Hur SH (2013) One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chem Eng J 229:126–133

    Article  CAS  Google Scholar 

  67. Kusworo TD, Kumoro AC, Aryanti N, Utomo DP (2021) Removal of organic pollutants from rubber wastewater using hydrophilic nanocomposite rGO-ZnO/PES hybrid membranes. J Environ Chem Eng 9(6):106421

    Article  CAS  Google Scholar 

  68. Ismail RA, Kumar M, Thomas N, An AK, Arafat HA (2021) Multifunctional hybrid UF membrane from poly(ether sulfone) and quaternized polydopamine anchored reduced graphene oxide nanohybrid for water treatment. J Membr Sci 639:119779

    Article  CAS  Google Scholar 

  69. Sainath K, Modi A, Bellare J (2021) CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: evaluating effect of filler concentration on performance. Chem Eng J Adv 5:100074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Modi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sainath, K., Modi, A. (2023). Graphene Oxide and Its Derivatives as Additives in Polymeric Membranes for Water Treatment Applications. In: Mohanty, K., Saran, S., Kumara Swamy, B.E., Sharma, S.C. (eds) Graphene and its Derivatives (Volume 2). Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-4382-1_6

Download citation

Publish with us

Policies and ethics

Navigation