Part of the book series: Green Energy and Technology ((GREEN))

  • 356 Accesses

Abstract

Polymeric materials have attracted tremendous attention for their applications in metal-sulfur batteries due to their unique properties, which have been widely used for each component of a cell based on the corresponding requirements. Thus, this chapter aims to deliver an overview of the research by utilizing polymeric materials in metal-sulfur batteries, mainly focusing on lithium-sulfur (Li–S) batteries. A brief introduction to Li–S batteries is first given, followed by the advantages of polymers performed in Li–S batteries. Applications of polymeric materials in Li–S batteries associated with the integrated designs have been further discussed. A perspective regarding the broad applications of polymers has also been presented at the end to provide insightful comments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 229.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  CAS  Google Scholar 

  2. Chen Z, Wang M, Mo Y, Zhang C, Wang Y, Gao C, Zhu J, Gao J, Shen M, Gao Q (2022) A breathable and reliable thermoplastic polyurethane/Ag@K2Ti4O9 composite film with asymmetrical porous structure for wearable piezoresistive sensors. J Mater Chem C 10:12986–12997

    Article  CAS  Google Scholar 

  3. Zhu J, Lim J, Lee C-H, Joh H-I, Kim HC, Park B, You N-H, Lee S (2014) Multifunctional polyimide graphene oxide composites via in-situ polymerization. J Appl Polym Sci 131:40177

    Article  Google Scholar 

  4. Li Y, Shen Q, Shen J, Ding X, Liu T, He J, Zhu C, Zhao D, Zhu J (2021) Multifunctional fibroblasts enhanced via thermal and freeze-drying treatments of aligned electrospun nanofiber membranes. Adv Fiber Mater 3:26–37

    Article  CAS  Google Scholar 

  5. Wang Y, Zhu J, Shen M, Gao C, Wang M, Zhao C, Gao J, Gao Q (2022) Three-layer core-shell Ag/AgCl/PEDPT:PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors. Chem Eng J 442:136270

    Google Scholar 

  6. Gao Q, Li C, Wang M, Zhu J, Wang P, Zhu C, Zhu P, Gao C (2022) A highly adhesive, self-healing and perdurable PEDOT:PSS/PAA-Fe3+ gel enabled by multiple non-covalent interactions for multi-functional wearable electronics. J Mater Chem C 10:6271–6280

    Article  CAS  Google Scholar 

  7. Wang P, Wang M, Zhu J, Wang Y, Gao J, Gao C, Gao Q (2021) Surface engineering via self-assembly on PEDOT:PSS fibers: biomimetic fluff-like morphology and sensing application. Chem Eng J 425:131551

    Article  CAS  Google Scholar 

  8. Wang Y, Wang M, Wang P, Zhou W, Chen Z, Gao Q, Shen M, Zhu J (2021) Urea-treated wet-spun PEDOT:PSS fibers for achieving high-performance wearable supercapacitors. Compos Commun 27:100885

    Article  Google Scholar 

  9. Zhu J, Lu Y, Chen C, Ge Y, Jasper S, Leary JD, Li D, Jiang M, Zhang X (2016) Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. J Alloys Compd 672:79–85

    Article  CAS  Google Scholar 

  10. Li D, Wang H, Luo L, Zhu J, Li J, Liu P, Yu Y, Jiang M (2021) An electrospun separator based on sulfonated polyoxadiazole with outstanding thermal stability and electrochemical properties for lithium-ion batteries. ACS Appl Energy Mater 4:879–887

    Article  CAS  Google Scholar 

  11. Chung SH, Manthiram A (2019) Current status and future prospects of metal-sulfur batteries. Adv Mater 31:1901125

    Article  Google Scholar 

  12. Zhu J, Cheng H, Zhu P, Li Y, Gao Q, Zhang X (2022) Electrospun nanofibers enabled advanced lithium-sulfur batteries. Acc Mater Res 3:149–160

    Article  CAS  Google Scholar 

  13. Yu Y, Zhu J, Zeng K, Jiang M (2021) Mechanically robust and superior conductive n-type polymer binders for high-performance silicon anodes in lithium-ion batteries. J Mater Chem A 9:3472–3481

    Article  CAS  Google Scholar 

  14. Yu Y, Gao H, Zhu J, Li D, Wang F, Jiang C, Zhong T, Jiang M (2021) Ionic/electronic conductivity regulation of n-type polyoxadiazole lithium sulfonate conductive polymer binders for high-performance silicon microparticle anodes. Chin Chem Lett 32:203–209

    Article  CAS  Google Scholar 

  15. Yu Y, Zhu J, Gao H, Yang C, Chen S, Zhang S, Jiang M (2020) Preparation and characterization of a class of self-do** aromatic polyoxadiazole electrochromic materials. J Appl Polym Sci 137:49406

    Article  CAS  Google Scholar 

  16. Gao H, Mao J, Li D, Yu Y, Yang C, Qi S, Liu Q, Zhu J, Jiang M (2020) Lithium sulfonated polyoxadiazole as a novel single-ion polymer electrolyte in lithium-ion batteries. J Electrochem Soc 167:070518

    Article  CAS  Google Scholar 

  17. Zhu P, Yan C, Zhu J, Zang J, Li Y, Jia H, Dong X, Du Z, Zhang C, Wu N, Dirican M, Zhang X (2019) Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater 17:220–225

    Article  Google Scholar 

  18. Li Y, Zhu J, Zhu P, Yan C, Jia H, Kiyak Y, Zang J, He J, Dirican M, Zhang X (2018) ZrO2 confined in porous nitrogen-doped carbon nanofiber used as a novel separator in lithium-sulfur batteries with a long lifespan. Chem Eng J 349:376–387

    Article  CAS  Google Scholar 

  19. Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries. Carbon 101:272–280

    Article  CAS  Google Scholar 

  20. Zhu P, Zhu J, Yan C, Dirican M, Zang J, Jia H, Li Y, Kiyak Y, Tan H, Zhang X (2018) In-situ polymerization of nanostructured conductive polymer on 3D sulfur/carbon nanofiber composite matrix as a cathode for high-performance lithium-sulfur batteries. Adv Mater Interfaces 5:1701598

    Article  Google Scholar 

  21. Selvan RK, Zhu P, Yan C, Zhu J, Dirican M, Shanmugavani A, Lee YS, Zhang X (2018) Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J Colloid Interface Sci 513:231–239

    Article  CAS  Google Scholar 

  22. Zhu J, Yildirim E, Aly K, Shen J, Chen C, Lu Y, Jiang M, Kim D, Tonelli AE, Pasquinelli MA, Bradford PD, Zhang X (2016) Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study. J Mater Chem A 4:13572–13581

    Article  CAS  Google Scholar 

  23. Zhu P, Zang J, Zhu J, Lu Y, Chen C, Jiang M, Yan C, Dirican M, Selvan RK, Kim D, Zhang X (2018) Effect of rGO reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries. Carbon 126:594–600

    Article  CAS  Google Scholar 

  24. Yu X, Manthiram A (2020) A progress report on metal-sulfur batteries. Adv Funct Mater 30:2004084

    Article  CAS  Google Scholar 

  25. Li Y, Zhu J, Zhu P, Yan C, Jia H, Kiyak Y, Zang J, He J, Dirican M, Zhang X (2018) Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries derived from polymer blends. J Membr Sci 552:31–42

    Article  CAS  Google Scholar 

  26. Zhu P, Zhu J, Zang J, Chen C, Lu Y, Jiang M, Yan C, Selvan KR, Zhang X (2017) A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. J Mater Chem A 5:15096–15104

    Article  CAS  Google Scholar 

  27. Zhu J, Ge Y, Kim D, Lu Y, Chen C, Jiang M, Zhang X (2016) A novel separator coated by carbon for achieving exceptional high-performance lithium-sulfur batteries. Nano Energy 20:176–184

    Article  CAS  Google Scholar 

  28. Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, Zhou X, Liu Z, Zaccaria RP (2019) A comprehensive understanding of lithium-sulfur battery technology. Adv Funct Mater 29:1901730

    Article  Google Scholar 

  29. Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8:3477–3494

    Article  CAS  Google Scholar 

  30. Xu H, Jiang Q, Zhang B, Chen C, Lin Z (2020) Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host. Adv Mater 32:1906357

    Article  CAS  Google Scholar 

  31. Li M, Carter R, Douglas A, Oakes L, Pint CL (2017) Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes. ACS Nano 11:4877–4884

    Article  CAS  Google Scholar 

  32. Liu K, Zhao H, Ye D, Zhang J (2022) Recent progress in organic polymers-composited sulfur materials as cathodes for lithium-sulfur battery. Chem Eng J 417:129309

    Article  Google Scholar 

  33. Shaibani M, Mirshekarloo MS, Singh R, Easton CD, Cooray MCD, Eshraghi N, Abendroth T, Dörfler S, Althues H, Kaskel S, Hollenkamp AF, Hill MR, Majumder M (2022) Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci Adv 6:eaay2757

    Google Scholar 

  34. Zhu J, Zhu P, Yan C, Dong X, Zhang X (2019) Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog Polym Sci 90:118–163

    Article  CAS  Google Scholar 

  35. Wang YX, Lai WH, Chou SL, Liu HK, Dou SX (2019) Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries. Adv Mater 32:1903952

    Article  Google Scholar 

  36. Zhu J, Yanilmaz M, Fu K, Chen C, Lu Y, Ge Y, Kim D, Zhang X (2016) Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J Membr Sci 504:89–96

    Article  CAS  Google Scholar 

  37. Duan L, Zhang F, Wang L (2016) Cathode materials for lithium sulfur batteries: design, synthesis, and electrochemical performance, in alkali-ion batteries. London, United Kingdom: IntechOpen

    Google Scholar 

  38. Gu S, Sun C, Xu D, Lu Y, ** J, Wen Z (2018) Recent progress in liquid electrolyte-based Li-S batteries: shuttle problem and solutions. Electrochem Energy Rev 1:599–624

    Article  CAS  Google Scholar 

  39. Gao X, Zhou YN, Han D, Zhou J, Zhou D, Tang W, Goodenough JB (2020) Thermodynamic understanding of Li-dendrite formation. Joule 4:1864–1879

    Google Scholar 

  40. Li D, Luo L, Zhu J, Qin H, Liu P, Sun Z, Lei Y, Jiang M (2021) A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth. Chin Chem Lett 33:1025–1031

    Article  Google Scholar 

  41. He Y, Ren X, Xu Y, Engelhard MH, Li X, **ao J, Liu J, Zhang JG, Xu W, Wang C (2019) Origin of lithium whisker formation and growth under stress. Nat Nanotechnol 14:1042–1047

    Article  CAS  Google Scholar 

  42. Qian J, ** B, Li Y, Zhan X, Hou Y, Zhang Q (2021) Research progress on gel polymer electrolytes for lithium-sulfur batteries. J Energy Chem 56:420–437

    Article  CAS  Google Scholar 

  43. Dirlam PT, Glass RS, Char K, Pyun J (2017) The use of polymers in Li-S batteries: a review. J Polym Sci Part A: Polym Chem 55:1635–1668

    Google Scholar 

  44. Gomez I, Mecerreyes D, Blazquez JA, Leonet O, Youcef HB, Li C, Gómez-Cámer JL, Bondarchuk O, Rodriguez-Martinez L (2016) J Power Sources 329:72–78

    Article  CAS  Google Scholar 

  45. Gracia I, Youcef HB, Judez X, Oteo U, Zhang H, Li C, Rodriguez-Martinez LM, Armand M (2018) S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries. J Power Sources 390:148–152

    Article  CAS  Google Scholar 

  46. Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, Oleshko VP, Kim J, Kim ETT, Glass RS, Soles CL, Sung YE, Char K, Pyun J (2014) Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries. ACS Macro Lett 3:229–232

    Article  CAS  Google Scholar 

  47. Zhang Y, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J (2017) Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J Polym Sci Part A: Polym Chem 55:107–116

    Google Scholar 

  48. Sang P, Song J, Guo W, Fu Y (2021) Hyperbranched organosulfur polymer cathode materials for Li-S battery. Chem Eng J 415:129043

    Article  CAS  Google Scholar 

  49. Hoefling A, Lee YJ, Theato P (2017) Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li-S batteries. Macromol Chem Phys 218:1600303

    Article  Google Scholar 

  50. Li S, Li H, Zhu G, ** B, Liu H, Jiang Q (2019) Improved electrochemical performance of Li-S battery with carbon and polymer-modified cathode. Appl Surf Sci 479:265–272

    Article  CAS  Google Scholar 

  51. Moon S, Yoo JK, Jung YH, Kim JH, Jung YS, Kim DK (2017) Effective suppression of polysulfide dissolution by uniformly transfer-printed conducting polymer on sulfur cathode for Li-S batteries. J Electrochem Soc 164:A6417–A6421

    Article  CAS  Google Scholar 

  52. Cheng M, Li L, Chen Y, Guo X, Zhong B (2016) A functional binder-sulfonated poly(ether ether ketone) for sulfur cathode of Li-S batteries. RSC Adv 6:77937–77943

    Article  CAS  Google Scholar 

  53. Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662

    Article  CAS  Google Scholar 

  54. Babu DB, Giribabu J, Ramesha K (2018) Permselective SPEEK/Nafion composite-coated separator as a potential polysulfide crossover barrier layer for Li-S batteries. ACS Appl Mater Interfaces 10:19721–19729

    Article  CAS  Google Scholar 

  55. Li Z, Jiao S, Yu D, Zhang Q, Liu K, Han J, Guo Z, Liu J, Wang L (2021) Cationic-polymer-functionalized separator as a high-efficiency polysulfide shuttle barrier for long-life Li-S battery. ACS Appl Energy Mater 4:2914–2921

    Article  CAS  Google Scholar 

  56. Shi QX, Yang CY, Pei HJ, Chang C, Guan X, Chen FY, **e XL, Ye YS (2021) Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. Chem Eng J 404:127044

    Article  CAS  Google Scholar 

  57. Lim WG, Oh S, Jeong J, Jang W, Shim KI, Kim S, Han JW, Im SG, Lee J (2021) Ultrathin and bifunctional polymer-nanolayer-embedded separator to simultaneously alleviate Li dendrite growth and polysulfide crossover in Li-S batteries. ACS Appl Energy Mater 4:611–622

    Article  CAS  Google Scholar 

  58. Li Y, Wang W, Liu X, Mao E, Wang M, Li G, Fu L, Li Z, Eng AYS, Seh ZW, Sun Y (2019) Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Mater 23:261–268

    Article  Google Scholar 

  59. Sun CC, Song YZ, Yan Y, Yuan JJ, Huang Z, Fang LF, Zhu BK (2020) Integrating flexible PMIA separator and electrode for dealing with multi-aspect issues in Li-S batteries. Electrochim Acta 359:136987

    Article  CAS  Google Scholar 

  60. Chen Y, Zhou G, Zong W, Ouyang Y, Chen K, Lv Y, Miao YE, Liu T (2021) Porous polymer composite separators with three-dimensional ion-selective nanochannels for high-performance Li-S batteries. Compos Commun 25:100679

    Article  Google Scholar 

  61. Lee YH, Kim JH, Kim JH, Yoo JT, Lee SY (2018) Spiderweb-mimicking anion-exchanging separators for Li-S batteries. Adv Funct Mater 28:1801422

    Article  Google Scholar 

  62. Zhu J (2016) Advanced separator selection and design for high-performance lithium-sulfur batteries. North Carolina State University, Ph.D. dissertation

    Google Scholar 

  63. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796–3803

    Article  CAS  Google Scholar 

  64. Liu M, Zhou D, He YB, Fu Y, Qin X, Miao C, Du H, Li B, Yang QH, Lin Z, Zhao TS (2016) Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22:278–289

    Article  CAS  Google Scholar 

  65. Wang Y, Sahadeo E, Rubloff G, Lin CF, Lee SB (2019) High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sci 54:3671–3693

    Article  CAS  Google Scholar 

  66. Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu PC, Bao Z, Cui Y (2017) Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc 139:4815–4820

    Article  CAS  Google Scholar 

  67. Lee YG, Ryu S, Sugimoto T, Yu T, Chang WS, Yang Y, Jung C, Woo J, Kang SG, Han HN, Doo SG (2017) Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection. Chem Mater 29:5906–5914

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiadeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, J., Zhou, Y., Gao, Q., Jiang, M. (2023). Polymeric Materials for Metal-Sulfur Batteries. In: Gupta, R.K. (eds) Recent Advancements in Polymeric Materials for Electrochemical Energy Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4193-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4193-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4192-6

  • Online ISBN: 978-981-99-4193-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation