Polymeric Nanocomposites for Flexible Supercapacitors

  • Chapter
  • First Online:
Recent Advancements in Polymeric Materials for Electrochemical Energy Storage

Part of the book series: Green Energy and Technology ((GREEN))

  • 313 Accesses

Abstract

Polymeric-based flexible supercapacitors have received much attention due to their variable conductivity, good cyclic stability, different do** natures, and also eco-friendly processability. Polymeric-based flexible supercapacitors can be made effectively by incorporating polymeric materials into flexible substrates. In this chapter, new advancements in the study and creation of flexible supercapacitors based on polymeric materials are reviewed in detail. We focus on the electrochemical properties of conducting polymers based on polymeric materials, such as pure polymeric and polymeric-based hybrids in supercapacitors. The most recent developments in creating binary and ternary polymeric-based flexible materials with polymeric bases are described. Furthermore, the future and current scenario of polymeric-based materials in supercapacitors are also addressed. In the last, we examine the prime areas in research and development for commercializing polymeric-based supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma S, Das T, Pandey VK, Verma B (2022) Nanoarchitectonics of GO/PANI/CoFe2O4 (Graphene Oxide/polyaniline/Cobalt Ferrite) based hybrid composite and its use in fabricating symmetric supercapacitor devices. J Mol Struct 133515

    Google Scholar 

  2. Wang Q, Wang X, Xu J, Ouyang X, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51

    Article  CAS  Google Scholar 

  3. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  4. Verma S, Verma B (2022) Graphene-based nanomaterial for supercapacitor application. In: Nanostructured materials for supercapacitors, pp 221–244

    Google Scholar 

  5. Verma S, Pandey VK, Verma B (2022) Synthesis and supercapacitor performance studies of graphene oxide based ternary composite. Mater Technol 1–17

    Google Scholar 

  6. Das T, Pandey VK, Verma S, Pandey SK, Verma B (2022) Optimization of the ratio of aniline, ammonium persulfate, para-toluenesulfonic acid for the synthesis of conducting polyaniline and its use in energy storage devices. Int J Energy Res

    Google Scholar 

  7. Feng Z-Q, Wu J, Cho W, Leach MK, Franz EW, Naim YI, Gu Z-Z, Corey JM, Martin DC (2013) Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer (Guildf) 54:702–708

    Article  CAS  Google Scholar 

  8. Pandey VK, Verma S, Verma B (2022) Polyaniline/activated carbon/copper ferrite (PANI/AC/CuF) based ternary composite as an efficient electrode material for supercapacitor. Chem Phys Lett 802:139780

    Article  CAS  Google Scholar 

  9. Verma S, Pandey VK, Verma B (2022) Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4) hybrid nanocomposite for supercapacitor applications. Synth Met 286:117036

    Article  CAS  Google Scholar 

  10. Verma S, Das T, Pandey VK, Verma B (2022) Facile and scalable synthesis of reduced-graphene oxide using different green reducing agents and its characterizations. Diam Relat Mater 129:109361

    Article  CAS  Google Scholar 

  11. Canales M, Torras J, Fabregat G, Meneguzzi A, Alemán C (2014) Polyaniline emeraldine salt in the amorphous solid state: Polaron versus bipolaron. J Phys Chem B 118:11552–11562

    Article  CAS  Google Scholar 

  12. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrap**. Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  13. Li Q, Liu J, Zou J, Chunder A, Chen Y, Zhai L (2011) Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J Power Sources 196:565–572

    Article  CAS  Google Scholar 

  14. Pandey VK, Verma S, Das T, Verma B (2022) Supercapacitive behavior of polyaniline-waste derived carbon-copper cobaltite based ternary composite. Bioresour Technol Rep 20:101255

    Article  CAS  Google Scholar 

  15. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    Article  CAS  Google Scholar 

  16. Inamuddin H (2019) Abbas Kashmery, Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  17. Horng Y-Y, Lu Y-C, Hsu Y-K, Chen C-C, Chen L-C, Chen K-H (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195:4418–4422

    Article  CAS  Google Scholar 

  18. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim Acta 39:273–287

    Article  CAS  Google Scholar 

  19. Kim J-Y, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402

    Article  CAS  Google Scholar 

  20. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  21. Neves S, Polo Fonseca C (2002) Influence of template synthesis on the performance of polyaniline cathodes. J Power Sources 107:13–17

    Google Scholar 

  22. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586

    Article  CAS  Google Scholar 

  23. Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463

    Article  CAS  Google Scholar 

  24. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—Influence of Triton X-100. J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  25. Mondal SK, Barai K, Munichandraiah N (2007) High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim Acta 52:3258–3264

    Article  CAS  Google Scholar 

  26. Kuila BK, Nandan B, Böhme M, Janke A, Stamm M (2009) Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem Commun 5749

    Google Scholar 

  27. Peng C, Hu D, Chen GZ (2011) Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on ‘vertically oriented arrays of polyaniline nanorods and their super electrochemical properties.’ Chem Commun 47:4105

    Article  CAS  Google Scholar 

  28. Kim BC, Kwon JS, Ko JM, Park JH, Too CO, Wallace GG (2010) Preparation and enhanced stability of flexible supercapacitor prepared from nafion/polyaniline nanofiber. Synth Met 160:94–98

    Article  CAS  Google Scholar 

  29. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    Article  CAS  Google Scholar 

  30. Kim BC, Ko JM, Wallace GG (2008) A novel capacitor material based on nafion-doped polypyrrole. J Power Sources 177:665–668

    Article  CAS  Google Scholar 

  31. Wang J, Xu Y, Wang J, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. Synth Met 161:1141–1144

    Article  CAS  Google Scholar 

  32. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195:6964–6969

    Article  CAS  Google Scholar 

  33. Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2014) Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sources 246:800–807

    Article  CAS  Google Scholar 

  34. Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044

    Article  CAS  Google Scholar 

  35. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470

    Article  CAS  Google Scholar 

  36. Snook GA, Chen GZ (2008) The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. J Electroanal Chem 612:140–146

    Article  CAS  Google Scholar 

  37. Laforgue A, Simon P, Sarrazin C, Fauvarque J-F (1999) Polythiophene-based supercapacitors. J Power Sources 80:142–148

    Article  CAS  Google Scholar 

  38. Liu K, Hu Z, Xue R, Zhang J, Zhu J (2008) Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J Power Sources 179:858–862

    Article  CAS  Google Scholar 

  39. Sivaraman P, Thakur A, Kushwaha RK, Ratna D, Samui AB (2006) Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem Solid-State Lett 9:A435

    Article  CAS  Google Scholar 

  40. Kearns JT, Roberts ME (2012) Enhanced performance of triarylamine redox electrodes through directed electrochemical polymerization. J Mater Chem 22:2392–2394

    Article  CAS  Google Scholar 

  41. Kearns JT, Roberts ME (2012) Synthesis of high-charge capacity triarylamine–thiophene redox electrodes using electrochemical copolymerization. J Mater Chem 22:25447

    Article  CAS  Google Scholar 

  42. Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chem 19:6977

    Article  CAS  Google Scholar 

  43. Österholm AM, Shen DE, Dyer AL, Reynolds JR (2013) Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl Mater Interfaces 5:13432–13440

    Article  Google Scholar 

  44. Nejati S, Minford TE, Smolin YY, Lau KKS (2014) Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8:5413–5422

    Article  CAS  Google Scholar 

  45. D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, Davis NR, Liu DS, Yeung MT, Kim SY, Turner CL, Lech AT, Hammond PT, Kaner RB (2014) Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8:1500–1510

    Article  Google Scholar 

  46. Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sources 157:616–620

    Article  CAS  Google Scholar 

  47. Li P, Shi E, Yang Y, Shang Y, Peng Q, Wu S, Wei J, Wang K, Zhu H, Yuan Q, Cao A, Wu D (2014) Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res 7:209–218

    Article  CAS  Google Scholar 

  48. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical do**, coating and synergistic effect for energy storage. J Mater Chem 22:6300

    Article  CAS  Google Scholar 

  49. Zhang J, Chen P, Oh BHL, Chan-Park MB (2013) High capacitive performance of flexible and binder-free graphene–polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale 5:9860

    Article  CAS  Google Scholar 

  50. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  CAS  Google Scholar 

  51. Li P, Yang Y, Shi E, Shen Q, Shang Y, Wu S, Wei J, Wang K, Zhu H, Yuan Q, Cao A, Wu D (2014) Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 6:5228–5234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Verma, B. (2023). Polymeric Nanocomposites for Flexible Supercapacitors. In: Gupta, R.K. (eds) Recent Advancements in Polymeric Materials for Electrochemical Energy Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4193-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4193-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4192-6

  • Online ISBN: 978-981-99-4193-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation