Bamboo Expansion and Soil Microbial PLFAs

  • Chapter
  • First Online:
Bamboo Expansion: Processes, Impacts, and Management
  • 100 Accesses

Abstract

Phospholipids are a class of lipids containing phosphoric acid. Soil microorganisms mainly contain glycerophospholipids, which are the main components of the phospholipid bilayer on the microbial cell membrane. Phospholipid fatty acid (PLFA) is a fatty acid product obtained after phospholipid components are extracted from methylated soil. It is an important component of phospholipids in living organisms cell membranes. Because various microorganism groups might produce specific PLFAs via various biochemical pathways, each type of PLFA has a special map, and there are great differences between the PLFA maps of different groups of microorganisms. Therefore, they have a high degree of identification and characteristic landmarks, meaning they can be used to mark the type of microorganisms. When microorganisms die, the fatty acids in their bodies are quickly metabolized; thus, most of the phospholipids in the soil appear as components of living organisms. Based on the above characteristics, PLFA analysis method has been developed and is widely used in the analysis and monitoring of soil microbial community structures, which has become the main basis for microbial classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar R, Heil RD (1988) Soil organic carbon, nitrogen, and phosphorus quantities in Northern Great Plains rangeland. Soil Sci Soc Am J 52:1076–1081

    Article  CAS  Google Scholar 

  • Alexander K, Bryans T (2006) Evaluation of the sterility test for detection of microbial contaminants of allografts. Cell Tissue Bank 7:23–28

    Article  PubMed  Google Scholar 

  • Bai S, Zhou G, Wang Y, Liang Q, Chen J, Cheng Y, Shen R (2013) Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain nature reserve. Biodivers Sci 21:288–295

    Article  Google Scholar 

  • Bai S, Conant RT, Zhou G, Wang Y, Wang N, Li Y, Zhang K (2016) Effects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pools. Sci Rep 6:1–8

    Article  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 3:421–424

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chang EH, Chiu CY (2015) Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Appl Soil Ecol 91:1–7

    Article  Google Scholar 

  • Chang EH, Chen TH, Tian G, Chiu CY (2016) The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations. Appl Soil Ecol 98:213–220

    Article  Google Scholar 

  • Chen GS, Yang YS, **e JS, Li L, Gao R (2004) Soil biological changes for a natural forest and two plantations in subtropical China. Pedosphere 14:297–304

    CAS  Google Scholar 

  • Chen HQ, Li XC, Yu XF, Ma Y, Ke Y, Zhu HY, Xue J (2018) A review on technique progresses of microbial diversity in soil ecosystem. Earth Environ 46:204–209

    Google Scholar 

  • Chodak M, NikliÅ„ska M (2010) The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol Fertil Soils 46:555–566

    Article  CAS  Google Scholar 

  • Chou CH, Yang CM (1982) Allelopathic research of subtropical vegetation in Taiwan II. Comparative exclusion of understory by Phyllostachys edulis and Cryptomeria japonica. J Chem Ecol 8:1489–1507

    Article  CAS  PubMed  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • De Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  • Djukic I, Zehetner F, Mentler A, Gerzabek MH (2010) Microbial community composition and activity in different alpine vegetation zones. Soil Biol Biochem 42:155–161

    Article  CAS  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73:25–33

    Article  CAS  PubMed  Google Scholar 

  • Li F (2014) Functional expansion of phospholipid fatty acid (PLFA) identification system. Southwest Jiaotong University, Chengdu

    Google Scholar 

  • Fang M, Kremer RJ, Motavalli PP, Davis G (2005) Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol 71:4132–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579

    Article  PubMed  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907

    Article  CAS  Google Scholar 

  • FrostegÃ¥rd Ã…, Bååth E, Tunlio A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Gao X, **ao N, Ye Y, Fu M, Li J (2014) Analysis of microbial community functional diversity in the Changqing oilfield based on biology-ECO method. Chin J Appl Environ Biol 20:913–918

    CAS  Google Scholar 

  • Garten CT (2004) Potential net soil N mineralization and decomposition of glycine-13C in forest soils along an elevation gradient. Soil Biol Biochem 36:1491–1496

    Article  CAS  Google Scholar 

  • Garten CT, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136:342–352

    Article  CAS  Google Scholar 

  • Ge T, Chen X, Yuan H, Li B, Zhu H, Peng P, Li K, Jones DL, Wu J (2013) Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. Eur J Soil Biol 58:122–128

    Article  CAS  Google Scholar 

  • Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N (2009) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150:278–286

    Article  CAS  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  CAS  Google Scholar 

  • Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haiyan G, Guohu C, Yongjun L, Hao Z, Kangle Q (2016) The high throughput sequencing technology and its application in biology. Contemporary Animal Husbandry: 61–65

    Google Scholar 

  • Hamel C, Vujanovic V, Jeannotte R, Nakano-Hylander A, St-Arnaud M (2005) Negative feedback on a perennial crop: fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 268:75–87

    Article  CAS  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Sören T-B (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • He Z, Yu Z, Huang Z, Davis M, Yang Y (2016) Litter decomposition, residue chemistry and microbial community structure under two subtropical forest plantations: a reciprocal litter transplant study. Appl Soil Ecol 101:84–92

    Article  Google Scholar 

  • Huang CY, Jien SH, Chen TH, Tian G, Chiu CY (2014) Soluble organic C and N and their relationships with soil organic C and N and microbial characteristics in moso bamboo (Phyllostachys edulis) plantations along an elevation gradient in Central Taiwan. J Soils Sediments 14:1061–1070

    Article  Google Scholar 

  • Insam H (2001) Developments in soil microbiology since the mid 1960s. Geoderma 100:389–402

    Article  CAS  Google Scholar 

  • Krotulski AJ, Papsun DM, Noble C, Kacinko SL, Logan BK (2020) Brorphine-investigation and quantitation of a new potent synthetic opioid in forensic toxicology casework using liquid chromatography-mass spectrometry. J Forensic Sci 66:664–676

    Article  PubMed  Google Scholar 

  • Larpkern P, Moe SR, Totland R (2011) Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165:161–168

    Article  PubMed  Google Scholar 

  • Lerch TZ, Dignac M-F, Nunan N, Gr B, Barriuso E, Mariotti A (2009) Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biol Biochem 41:77–85

    Article  CAS  Google Scholar 

  • Li J, Hong J, **e Y, Wang H, Han X (2010) Effects of different fertilization treatments on reclaimed soil microbial community structure in core- mining subsidence area. Acta Ecol Sin 30:6193–6200

    Google Scholar 

  • Li Y, Zhang J, Chang SX, Jiang P, Zhou G, Fu S, Yan E, Wu J, Lin L (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. For Ecol Manag 303:121–130

    Article  Google Scholar 

  • Li J, Li Z, Wang F, Zou B, Chen Y, Zhao J, Mo Q, Li Y, Li X, **a H (2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fertil Soils 51:207–215

    Article  CAS  Google Scholar 

  • Li Y, Li Y, Chang SX, Xu Q, Guo Z, Gao Q, Qin Z, Yang Y, Chen J, Liang X (2017) Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production. Plant Soil 418:507–521

    Article  CAS  Google Scholar 

  • Liang C, Cheng G, Wixon DL, Balser TC (2011) An absorbing Markov chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 106:303–309

    Article  Google Scholar 

  • Liang RB, Liang J, Qiao MF, Xu Z, Liu Q, Yin H (2015) Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China. Chin J Plant Ecol 39:466–476

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  CAS  Google Scholar 

  • Liu HY (2016) Soil microbial community structure and functional diversity marked by PLFA in forestland. Bei**g Forestry University, Bei**g

    Google Scholar 

  • Liu W, Wang S, Chen Y, Wu W, Wang J (2011) Microbial diversity in rhizosphere soil of transgenic Bt rice based on the characterization of phospholipids fatty acids. Chin J Appl Ecol 22:727–733

    CAS  Google Scholar 

  • Liu XS, Siemann E, Cui C, Liu Y, Guo X, Zhang L (2019) Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant Soil 438:85–99

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a Northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  CAS  Google Scholar 

  • Lu SB, Guo XM, Rui YC, Zhou XQ, Chen CR, Xu ZH, Niu DK (2012) Utilization of carbon sources by the soil microbial communities of different forest types in subtropical Australia. Acta Ecol Sin 32:2819–2826

    Article  CAS  Google Scholar 

  • Lucas-Borja ME, Candel D, **do K, Moreno JL, Andrés M, Bastida F (2012) Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant Soil 354:359–370

    Article  CAS  Google Scholar 

  • Ludwig M, Achtenhagen J, Miltner A, Eckhardt K-U, Leinweber P, Emmerling C, S T-B (2015) Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biol Biochem 81:311–322

    Article  CAS  Google Scholar 

  • Ma YY, Chen J, Mao QP, Zhang CY, Ning W, Li YX (2020) Progresses on the determination of volatile flavor components in food by SPME-GC/MS. Modern Prev Med 47:4164–4167

    Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106

    Article  Google Scholar 

  • Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218

    Article  CAS  PubMed  Google Scholar 

  • Moore-Kucera J, Dick RP (2008) PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas- fir chronosequence. Microb Ecol 55:500–511

    Article  PubMed  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    Article  CAS  Google Scholar 

  • Nakane K (1995) Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. For Ecol Manag 72:185–197

    Article  Google Scholar 

  • Niu J, Zhou X, Jiang N, Wang Y (2011) Characteristics of microbial community structure under dry and wet soil conditions in Zoige alpine wetland. Acta Ecol Sin 31:474–482

    Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  PubMed  Google Scholar 

  • Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95:121–133

    Article  PubMed  Google Scholar 

  • Okutomi K, Shinoda S, Fukuda H (1996) Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J Veg Sci 7:723–728

    Article  Google Scholar 

  • Pascual JA, Garcia C, Hernandez T, Ayuso M (1997) Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol Fertil Soils 24:429–434

    Article  CAS  Google Scholar 

  • Paul EA (2016) The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem 98:109–126

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Peng Y, Zhang X, Gui Z, Du J, Zhou S (2013) Spatial distribution pattern in Emmenopterys henryi and Phyllostachys edulis mixed forest in Lushan Mountain. Guihaia 33:502–507

    Google Scholar 

  • Penn C, Camberato J (2019) A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9:120

    Article  Google Scholar 

  • Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58

    Article  PubMed  Google Scholar 

  • Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Qin H, Niu L, Wu Q, Chen J, Li Y, Liang C, Xu Q, Fuhrmann JJ, Shen Y (2017) Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant Soil 420:407–421

    Article  CAS  Google Scholar 

  • Sampedro I, Giubilei M, Cajthaml T, Federici E, Federici F, Petruccioli M, D’Annibale A (2009) Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresour Technol 100:6098–6106

    Article  CAS  PubMed  Google Scholar 

  • Sayer EJ, Sutcliffe LME, Ross RIC, Tanner EVJ (2010) Arthropod abundance and diversity in a lowland tropical forest floor in Panama: the role of habitat space vs. nutrient concentrations. Biotropica 42:194–200

    Article  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Shi P, Wang S, Jia S, Gao Q, Sun X (2011) Effects of three planting patterns on soil microbial community composition. Chin J Plant Ecol 35:965–972

    Article  CAS  Google Scholar 

  • Shiau YJ, Chiu CY (2017) Changes in soil biochemical properties in a cedar plantation invaded by Moso bamboo. Forests 8:222

    Article  Google Scholar 

  • Song QN, Ouyang M, Yang QP, Lu H, Yang GY, Chen FS, Shi JM (2016) Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China. Plant Soil 404:113–124

    Article  CAS  Google Scholar 

  • Sparling GP, Resources DL, Bag P, Hutt L, Zealand N (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Sun DD (2010) Community structure diversity of sail microbes under Phyllostachys pubescens stands repealed by PLFAs analysis. Zhejiang A&F University, Hangzhou

    Google Scholar 

  • Sun D, Xu Q, Tian T, Liu B (2011) Investigation on soil microbial biomass and structure in Phyllostachys edulis plantations with increasing cultivation time. Sci Silvae Sin 47:181–186

    Google Scholar 

  • Sun YC, Han SC, Yao MZ, Wang YM, Geng LW, Wang P, Lu WH, Liu HB (2020) High-throughput metabolomics method based on liquid chromatography-mass spectrometry: insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J Sep Sci 44:497–512

    Article  PubMed  Google Scholar 

  • Tang DS, Yin J, Peng ZB, Kuang BG, Yuan ZK, **a JL (2013) Drawing of vegetation distribution map of Nanyue based on 3S technology. J Cent South Univ Forest Technol 33:15–19

    Google Scholar 

  • Tsui CC, Tsai CC, Chen ZS (2013) Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma 209-210:119–127

    Article  CAS  Google Scholar 

  • Tunlid A, Olsso S, Findl RH, Odha G, Whit DC (1985) Determination of phospholipid ester-linked fatty acids and poly p-hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.). Can J Microbiol 31:1113–1119

    Article  CAS  Google Scholar 

  • Ushio M, Kitayama K, Balser TC (2010) Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biol Biochem 42:1588–1595

    Article  CAS  Google Scholar 

  • Van Calster H, Baeten L, De Schrijver A, De Keersmaeker L, Rogister JE, Verheyen K, Hermy M (2007) Management driven changes (1967-2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. For Ecol Manag 241:258–271

    Article  Google Scholar 

  • Vega-Avila AD, Gumiere T, Andrade PA, Lima-Perim JE, Durrer A, Baigori M, Vazquez F, Andreote FD (2015) Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie Van Leeuwenhoek 107:575–588

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Liu YH, Wang Q, Gong M, Hua XM, Pang YJ, Hu S, Yang YH (2008) Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biol Biochem 40:778–788

    Article  CAS  Google Scholar 

  • Wang HC, Tian G, Chiu CY (2016) Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter. Sci Rep 6:1–6

    Google Scholar 

  • Wang X, Sasaki A, Toda M, Nakatsubo T (2017) Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo (Phyllostachys pubescens). J For Res 21:235–243

    Article  Google Scholar 

  • Wang J, Xu Y, Ding F, Gao X, Li S, Sun L, An T, Pei J, Li M, Wang Y (2019) Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedol Sin 56:528–540

    Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wardle D, Yeates G, Barker G, Bonner K (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

    Article  CAS  Google Scholar 

  • Wei K, Yao R, Li N, Chen H, Dai H (2020) Investigation on the pyrolysis behavior of chlorinated paraffin through gas chromatography-mass spectrometry combined with on-line pyrolysis. J Zhejiang Sci Tech Univ 1:1–6

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  CAS  PubMed  Google Scholar 

  • Wu YP (2009) Studies on soil microbial community structure based on phospholipid fatty acid (PLFA) analysis. Zhejiang University, Hangzhou

    Google Scholar 

  • Wu J, Xu Q, Jiang P, Cao Z (2009) Dynamics and distribution of nutrition elements in bamboos. J Plant Nutr 32:489–501

    Article  CAS  Google Scholar 

  • Xu QF, Jiang PK, Wu JS, Zhou GM, Shen RF, Fuhrmann JJ (2015) Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biol Invasions 17:433–444

    Article  Google Scholar 

  • Yan LH, Zhang ZC, Xl LJ, Liang WL (2016) Bacteria community diversity and differences in different types of activated sludge. Chem Bioeng 33:57–62

    Google Scholar 

  • Yang S, Du Q, Chen J, Liu L (2008) Study on the influence of moso bamboo forest spread on bird diversity in Tianmu Mountain. J Zhejiang Forest Sci Technol 1:43–46

    CAS  Google Scholar 

  • Yu X, He M, Liu Y, Li L, Zhang J, Zhao P (2021) GC-MS analysis of volatile components from the heartwoods of 4 Cunninghamia lanceolata clones. JSW Forest Univ 41:110–117

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhang C, ** Z, Shi S (2003) Microflora and microbial quotient ( qMB, qCO2) values of soils in different forest types on Tiantai Mountain in Zhejiang. Chin J Ecol 22:28–31

    CAS  Google Scholar 

  • Zhang N, Liu W, Yang H, Yu X, Gutknecht JLM, Zhang Z, Wan S, Ma K (2013) Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173:1125–1142

    Article  PubMed  Google Scholar 

  • Zhang WY, Sheng KY, Fan CF, Liu S, Chen MM, Zhong SQ, Wen WH, Wu ZH, Tu SP, Guo XM, Hu DN (2015) Phospholipid fatty acid analysis of microbial community structure in rhizosphere soil of Phyllostachys edulis in Gannan. Acta Agric Univ Jiangxiensis 37:475–483

    CAS  Google Scholar 

  • Zhang M, Teng Y, Xu Z, Wang J, Christie P, Luo Y (2016) Cumulative effects of repeated chlorothalonil application on soil microbial activity and community in contrasting soils. J Soils Sediments 16:1754–1763

    Article  CAS  Google Scholar 

  • Zhang Q, **ong G, Li J, Lu Z, Li Y, Xu W, Wang Y, Zhao C, Tang Z, **e Z (2018) Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant Soil 427:305–319

    Article  CAS  Google Scholar 

  • Zhao Q, Classen AT, Wang WW, Zhao XR, Mao B, Zeng DH (2017) Asymmetric effects of litter removal and litter addition on the structure and function of soil microbial communities in a managed pine forest. Plant Soil 414:81–93

    Article  CAS  Google Scholar 

  • Zheng S, **ao Q, Wu W, He Y (2008) Relationship among microbial groups, enzyme activity and physico-chemical properties under different artificial forestry in hilly red soil. Chin J Eco-Agric 16:57–61

    CAS  Google Scholar 

  • Zheng XF, Su YK, Liu B, Lan JL, Yang SS, Lin YZ (2010) Microbial community diversity in tea root zone soils at different elevations. Chin J Eco-Agric 18:866–871

    Article  CAS  Google Scholar 

  • Zheng Q, Cui X, Di X, ** S (2012) Effects of different forest fire intensities on microbial community functional diversity in forest soil in Daxing’anling. Sci Silvae Sin 48:95–100

    Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:523–523

    Article  CAS  Google Scholar 

  • Zhu CL, Shangguan LP (2009) Preliminary study on the influence of the expansion edge on biodiversity of moso bamboo forest in **ggang Mountain. Terr Nat Resour Study 1:45–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L. (2023). Bamboo Expansion and Soil Microbial PLFAs. In: Bamboo Expansion: Processes, Impacts, and Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-4113-1_11

Download citation

Publish with us

Policies and ethics

Navigation